Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2002 Sep 15;33(6):737-43.
doi: 10.1016/s0891-5849(02)00892-4.

Peroxynitrite signaling: receptor tyrosine kinases and activation of stress-responsive pathways

Affiliations
Review

Peroxynitrite signaling: receptor tyrosine kinases and activation of stress-responsive pathways

Lars-Oliver Klotz et al. Free Radic Biol Med. .

Abstract

Peroxynitrite, generated for example in inflammatory processes, is capable of nitrating and oxidizing biomolecules, implying a considerable impact on the integrity of cellular structures. Cells respond to stressful conditions by the activation of signaling pathways, including receptor tyrosine kinase-dependent pathways such as mitogen-activated protein kinases and the phosphoinositide-3-kinase/Akt pathway. Peroxynitrite affects signaling pathways by nitration as well as by oxidation: while nitration of tyrosine residues by peroxynitrite modulates signaling processes relying on tyrosine phosphorylation and dephosphorylation, oxidation of phosphotyrosine phosphatases may lead to an alteration in the tyrosine phosphorylation/dephosphorylation balance. The flavanol (-)-epicatechin is a potent inhibitor of tyrosine nitration and may be employed as a tool to distinguish signaling effects due to tyrosine nitration from those that are due to oxidation reactions.

PubMed Disclaimer

Publication types

LinkOut - more resources