Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Sep 13;949(1-2):88-96.
doi: 10.1016/s0006-8993(02)02968-2.

Cytochrome c release and caspase activation after traumatic brain injury

Affiliations

Cytochrome c release and caspase activation after traumatic brain injury

Patrick G Sullivan et al. Brain Res. .

Abstract

Experimental traumatic brain injury (TBI) results in a rapid and significant necrosis of cortical tissue at the site of injury. In the ensuing hours and days, secondary injury exacerbates the primary damage resulting in significant neurological dysfunction. The identification of cell death pathways that mediate this secondary traumatic injury have not been elucidated, however recent studies have implicated a role for apoptosis in the neuropathology of traumatic brain injury. The present study utilized a controlled cortical impact model of brain injury to assess the involvement of apoptotic pathways: release of cytochrome c from mitochondria and the activation of caspase-1- and caspase-3-like proteases in the injured cortex at 6, 12 and 24 h post-injury. Collectively, these results demonstrate cytochrome c release from mitochondria and its redistribution into the cytosol occurs in a time-dependent manner following TBI. The release of cytochrome c is accompanied by a time-dependent increase in caspase-3-like protease activity with no apparent increase in caspase-1-like activity. However, pretreatment with a general caspase inhibitor had no significant effect on the amount of cortical damage observed at 7 days post-injury. Our data suggest that several pro-apoptotic events occur following TBI, however the translocation of cytochrome c itself and/or other events upstream of caspase activation/inhibition may be sufficient to induce neuronal cell death.

PubMed Disclaimer

Publication types

LinkOut - more resources