Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Sep 13;330(1):45-8.
doi: 10.1016/s0304-3940(02)00732-2.

Loss of medial septal modulation of dentate gyrus physiology in young mice overexpressing human beta-amyloid precursor protein

Affiliations

Loss of medial septal modulation of dentate gyrus physiology in young mice overexpressing human beta-amyloid precursor protein

Manuel Sánchez-Alavez et al. Neurosci Lett. .

Abstract

Mice overexpressing the human mutant beta-amyloid precursor protein (hbetaAPP; PDAPP mice) show deficits in hippocampal-dependent spatial learning and hippocampal short- and long-term plasticity at ages preceding Abeta plaque deposition. We determined whether young PDAPP mice also exhibit alterations in septohippocampal function in vivo, which plays an important role in cognitive function. Electrical stimulation of the medial septum significantly increased neuronal excitability and reduced paired-pulse facilitation in the dentate gyrus. Medial septal-induced facilitation of dentate neuronal excitability was reduced in PDAPP mice. The inhibitory effects of medial septum stimulation on dentate paired-pulse facilitation were also attenuated in PDAPP mice. Young mice overexpressing hbetaAPP exhibit early abnormalities in neural circuits implicated in cognitive function that may play an important role in the more profound deficits observed in aged PDAPP mice.

PubMed Disclaimer

Publication types

Substances

LinkOut - more resources