Development of the sensory organs
- PMID: 12216279
- PMCID: PMC10361195
- DOI: 10.3184/003685002783238852
Development of the sensory organs
Abstract
The sensory organs--the eye, ear, and nose- are formed, in part, from ectodermal thickenings: placodes. Their development is distinct from that of other regions of the developing body and they are essential for the development of other structures. For example, the olfactory placode which gives rise to the nose is essential for the functional development of the reproductive organs and hence fertility. Recently much progress has been made in the understanding of placode development, at both a molecular and embryological level. This is important as abnormal development of placodes occurs in a number of human syndromes. Furthermore, knowledge of placode development will give insight into therapeutic strategies to prevent degenerative change such as deafness. This review highlights the current knowledge of placode development and the future challenges in unravelling the cascades of signalling interactions that control development of these unique structures.
Similar articles
-
The preplacodal region: an ectodermal domain with multipotential progenitors that contribute to sense organs and cranial sensory ganglia.Int J Dev Biol. 2007;51(6-7):447-61. doi: 10.1387/ijdb.072327as. Int J Dev Biol. 2007. PMID: 17891708 Review.
-
Induction and specification of the vertebrate ectodermal placodes: precursors of the cranial sensory organs.Biol Cell. 2005 May;97(5):303-19. doi: 10.1042/BC20040515. Biol Cell. 2005. PMID: 15836430 Review.
-
Sensory organs: making and breaking the pre-placodal region.Curr Top Dev Biol. 2006;72:167-204. doi: 10.1016/S0070-2153(05)72003-2. Curr Top Dev Biol. 2006. PMID: 16564335 Review.
-
Neurogenic and non-neurogenic placodes in ascidians.J Exp Zool B Mol Dev Evol. 2004 Sep 15;302(5):483-504. doi: 10.1002/jez.b.21013. J Exp Zool B Mol Dev Evol. 2004. PMID: 15384166
-
Developing a sense of scents: plasticity in olfactory placode formation.Brain Res Bull. 2008 Mar 18;75(2-4):340-7. doi: 10.1016/j.brainresbull.2007.10.054. Epub 2007 Nov 21. Brain Res Bull. 2008. PMID: 18331896 Free PMC article. Review.
Cited by
-
The IgLON family of cell adhesion molecules expressed in developing neural circuits ensure the proper functioning of the sensory system in mice.Sci Rep. 2024 Sep 30;14(1):22593. doi: 10.1038/s41598-024-73358-z. Sci Rep. 2024. PMID: 39349721 Free PMC article.
-
Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw.Evodevo. 2019 Aug 12;10:17. doi: 10.1186/s13227-019-0131-8. eCollection 2019. Evodevo. 2019. PMID: 31417668 Free PMC article. Review.
-
Neural crest and the origin of species-specific pattern.Genesis. 2018 Jun;56(6-7):e23219. doi: 10.1002/dvg.23219. Genesis. 2018. PMID: 30134069 Free PMC article. Review.
References
-
- Baker C.V., & Bronner-Fraser M. (2001) Vertebrate cranial placodes I. Embryonic induction. Dev. Biol., 232, 1–61. - PubMed
-
- Soussi-Yanicostas N., Faivre-Sarrailh C., Hardelin J.P., Levilliers J., Rougon G., & Petit C. (1998) Anosmin-1 underlying the X chromosome-linked Kallmann syndrome is an adhesion molecule that can modulate neurite growth in a cell-type specific manner. J. Cell Sci., 111, 2953–2965. - PubMed
-
- Breitman M.L., Bryce D.M., Giddens E., Clapoff S., Goring D., Tsui L.C., Klintworth U.K., & Bernstein A. (1989) Analysis of lens cell fate and eye morphogenesis in transgenic mice ablated for cells of the lens lineage. Development, 106, 457–463. - PubMed
-
- Harrington L., Klintworth U.K., Secor T.E., & Breitman M.L. (1991) Developmental analysis of ocular morphogenesis in alpha A- crystallin/diph-theria toxin transgenic mice undergoing ablation of the lens. Dev. Biol., 148, 508–516. - PubMed
-
- Beebe D.C., & Coats J.M. (2000) The lens organizes the anterior segment: specification of neural crest cell differentiation in the avian eye. Dev Biol., 220, 424–431. - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources