Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Nov 8;277(45):42505-13.
doi: 10.1074/jbc.M207412200. Epub 2002 Sep 5.

Enzymatic synthesis in vitro of the disulfated disaccharide unit of corneal keratan sulfate

Affiliations
Free article

Enzymatic synthesis in vitro of the disulfated disaccharide unit of corneal keratan sulfate

Tomoya O Akama et al. J Biol Chem. .
Free article

Abstract

Among the enzymes of the carbohydrate sulfotransferase family, human corneal GlcNAc 6-O-sulfotransferase (hCGn6ST, also known as human GlcNAc6ST-5/GST4beta) and human intestinal GlcNAc 6-O-sulfotransferase (hIGn6ST or human GlcNAc6ST-3/GST4alpha) are highly homologous. In the mouse, intestinal GlcNAc 6-O-sulfotransferase (mIGn6ST or mouse GlcNAc6ST-3/GST4) is the only orthologue of hCGn6ST and hIGn6ST. In the previous study, we found that hCGn6ST and mIGn6ST, but not hIGn6ST, have sulfotransferase activity to produce keratan sulfate (Akama, T. O., Nakayama, J., Nishida, K., Hiraoka, N., Suzuki, M., McAuliffe, J., Hindsgaul, O., Fukuda, M., and Fukuda, M. N. (2001) J. Biol. Chem. 276, 16271-16278). In this study, we analyzed the substrate specificities of these sulfotransferases in vitro using synthetic carbohydrate substrates. We found that all three sulfotransferases can transfer sulfate to the nonreducing terminal GlcNAc of short carbohydrate substrates. Both hCGn6ST and mIGn6ST, but not hIGn6ST, transfer sulfate to longer carbohydrate substrates that have poly-N-acetyllactosamine structures, suggesting the involvement of hCGn6ST and mIGn6ST in production of keratan sulfate. To clarify further the involvement of hCGn6ST in biosynthesis of keratan sulfate, we reconstituted the biosynthetic pathway in vitro by sequential enzymatic treatment of a synthetic carbohydrate substrate. Using four enzymes, beta1,4-galactosyltransferase-I, beta1,3-N-acetylglucosaminyltransferase-2, hCGn6ST, and keratan sulfate Gal 6-O-sulfotransferase, we were able to synthesize in vitro a product that conformed to the basic structural unit of keratan sulfate. Based on these results, we propose a biosynthetic pathway for N-linked keratan sulfate on corneal proteoglycans.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms