Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2002 Jul-Aug;23(4):253-8.

Hypersensitivity to common tree pollens in New York City patients

Affiliations
  • PMID: 12221895
Comparative Study

Hypersensitivity to common tree pollens in New York City patients

Robert Y Lin et al. Allergy Asthma Proc. 2002 Jul-Aug.

Abstract

Testing for tree pollen hypersensitivity typically requires the use of several tree pollens. Identifying patterns of cross-sensitivity to tree pollens could reduce the number of trees used for testing. The goal of this study was to relate reported tree pollen levels to hypersensitivity patterns. Three hundred seventy-one allergy patients were tested serologically for hypersensitivity toward prevalent tree pollens in the surrounding New York area over the years 1993-2000. Specific tree pollens that were examined included oak (Quercus alba), birch (Betula verrucosa), beech (Fagus grandifolia), poplar (Populus deltoides), maple (Acer negundo), ash (Fraxinus americana), hickory (Carya pecan), and elm (Ulmus americana). Statistical analysis of the levels of hypersensitivity was performed to identify correlations and grouping factors. Pollen levels, obtained from published annual pollen and spore reports, were characterized and related to the prevalence of hypersensitivity for the various trees. The highest prevalence of hypersensitivity (score > or = class 1) was for oak (34.3%), birch (32.9%), and maple (32.8%) tree pollens. Lower prevalences were observed for beech (29.6%), hickory (27.1%), ash (26%), elm (24.6%), and poplar (20.6%) trees. Significant correlations were observed between oak, birch, and beech radioallergosorbent test scores. Factor analysis identified two independent pollen groups with oak, birch, and beech consisting of one group and the other five tree pollens constituting the other group. Peak pollen counts clearly were highest for oak, birch, and maple trees. The peak pollen counts corresponded roughly to seropositivity prevalences for the tree pollens. When elm, poplar, and beech test scores were not used to identify patients who were allergic to tree pollens, only 1 of 106 patients with any positive tree radioallergosorbent test score was missed. It is concluded that in the New York City area, hypersensitivity to tree pollens most often is manifested with allergy to oak, birch, and maple tree pollens. Identifying beech, poplar, and elm hypersensitivity adds little toward identifying patients who are allergic to tree pollens. This may relate in part to cross-reactive epitopes. These data suggest that these three trees can be eliminated from testing with only a < 1% loss of sensitivity.

PubMed Disclaimer

MeSH terms

LinkOut - more resources