Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2002 Sep;11(9):1253-9.
doi: 10.1517/13543784.11.9.1253.

Therapeutic potential of GnRH antagonists in the treatment of precocious puberty

Affiliations
Review

Therapeutic potential of GnRH antagonists in the treatment of precocious puberty

Christian Roth. Expert Opin Investig Drugs. 2002 Sep.

Abstract

Pituitary-gonadal axis activation depends upon pulsatile hypothalamic gonadotropin-releasing hormone (GnRH) secretion. This phenomenon has led to clinical use of GnRH agonists in the treatment of central precocious puberty. GnRH analogues contain substitutions of the native decapeptide. Depending upon the substitutions, the analogues have GnRH agonistic or antagonistic properties. The pharmacokinetics of GnRH agonists, the established treatment of precocious puberty, includes an initial 'flare-up' of the pituitary-gonadal axis, followed by a reduced luteinising hormone secretion by desensitisation of pituitary GnRH receptors. Antagonistic GnRH analogues act by competitive binding to the pituitary GnRH receptors, thereby preventing the action of endogenous GnRH - theoretically offering a more direct and dose-dependent treatment alternative. The antagonist available today in Germany is a concomitant in assisted reproduction with only 1 - 3 days duration. However, long-acting depot preparations of other GnRH antagonists are in primate-testing phase. Our animal tests indicate strong potential for the development and testing of long-acting depot preparations of GnRH antagonists in treating precocious puberty.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

Substances

LinkOut - more resources