Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 Dec;109(4):1337-1343.
doi: 10.1104/pp.109.4.1337.

Is the Reaction Catalyzed by 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase a Rate-Limiting Step for Isoprenoid Biosynthesis in Plants?

Affiliations

Is the Reaction Catalyzed by 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase a Rate-Limiting Step for Isoprenoid Biosynthesis in Plants?

J. Chappell et al. Plant Physiol. 1995 Dec.

Abstract

3-Hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) catalyzes the irreversible conversion of 3-hydroxy-3-methylglutaryl coenzyme A to mevalonate and is considered a key regulatory step controlling isoprenoid metabolism in mammals and fungi. The rate-limiting nature of this enzyme for isoprenoid biosynthesis in plants remains controversial. To investigate whether HMGR activity could be limiting in plants, we introduced a constitutively expressing hamster HMGR gene into tabacco (Nicotiana tabaccum L.) plants to obtain unregulated HMGR activity. The impact of the resulting enzyme activity on the biosynthesis and accumulation of particular isoprenoids was evaluated. Expression of the hamster HMGR gene led to a 3- to 6-fold increase in the total HMGR enzyme activity. Total sterol accumulation was consequently increased 3- to 10-fold, whereas end-product sterols such as sitosterol, campesterol, and stigmasterol were increased only 2-fold. The level of cycloartenol, a sterol biosynthetic intermediate, was increased more than 100-fold. Although the synthesis of total sterols appears to be limited normally by HMGR activity, these results indicate that the activity of one or more later enzyme(s) in the pathway must also be involved in determining the relative accumulation of end-product sterols. The levels of other isoprenoids such as carotenoids, phytol chain of chlorophyll, and sesquiterpene phytoalexins were relatively unaltered in the transgenic plants. It appears from these results that compartmentation, channeling, or other rate-determining enzymes operate to control the accumulation of these other isoprenoid end products.

PubMed Disclaimer

References

    1. Nature. 1990 Feb 1;343(6257):425-30 - PubMed
    1. Biochem Biophys Res Commun. 1989 Nov 30;165(1):125-30 - PubMed
    1. Biochem Biophys Res Commun. 1992 Jul 31;186(2):888-93 - PubMed
    1. Plant Cell. 1992 Oct;4(10):1333-44 - PubMed
    1. Mol Cell Endocrinol. 1987 Oct;53(3):227-38 - PubMed

LinkOut - more resources