Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2002 Nov;39(5):530-5.
doi: 10.1002/mpo.10180.

Genetic alterations in hepatoblastoma and hepatocellular carcinoma: common and distinctive aspects

Affiliations
Review

Genetic alterations in hepatoblastoma and hepatocellular carcinoma: common and distinctive aspects

Marie Annick Buendia. Med Pediatr Oncol. 2002 Nov.

Abstract

Hepatoblastoma (HB) and hepatocellular carcinoma (HCC) are two different subtypes of primary tumors arising from liver parenchymal cells. These tumors differ by many histoclinical characteristics, and comparative analysis of genetic alterations in HB and HCC might provide some clues on the molecular oncogenic pathways leading to hepatocyte transformation. Recent outcomes have been provided by the assessment of global genetic changes in tumor cells, using conventional cytogenetic approaches, PCR-based microsatellite analysis and Comparative genomic Hybridization (CGH). Cytogenetic studies of HB, microsatellite analysis of HCC and recent CHG data have outlined common and distinctive characters between the two tumor types. HBs are characterized by a low number of chromosomal changes, consisting mainly of gains at chromosomes 1q, 2, 8q, 17q, and 20. By contrast, HCCs harbor multiple chromosomal abnormalities, predominantly losses, with increased chromosomal instability in tumors associated with hepatitis B virus infection. Common alterations in HB and HCC include gain of chromosomes 1q, 8q, and 17q, and loss of 4q. Another important common feature shared by the two tumor types is the frequent activation of Wnt/beta-catenin signaling by stabilizing mutations of beta-catenin. Immunohistochemical analysis of beta-catenin has demonstrated nuclear/cytoplasmic accumulation of the protein in most HBs and in more than one third of HCCs. Strikingly, beta-catenin mutations are associated with chromosomal stability in both tumor types. Together, these studies define different pathways in liver cell transformation, reflecting various developmental stages and multiple risk factors. A detailed understanding of the molecular hits underlying liver tumorigenesis, combined with clinicopathological parameters, will permit an accurate evaluation of major targets for prognostic and therapeutic intervention.

PubMed Disclaimer

LinkOut - more resources