Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2002 Sep 5;90(5A):11G-18G.
doi: 10.1016/s0002-9149(02)02554-7.

Pathogenesis of skeletal muscle insulin resistance in type 2 diabetes mellitus

Affiliations
Review

Pathogenesis of skeletal muscle insulin resistance in type 2 diabetes mellitus

Kitt F Petersen et al. Am J Cardiol. .

Abstract

Insulin resistance is a principal feature of type 2 diabetes and precedes the clinical development of the disease by 10 to 20 years. Insulin resistance is caused by the decreased ability of peripheral target tissues (especially muscle) to respond properly to normal circulating concentrations of insulin. Defects in muscle glycogen synthesis play a significant role in insulin resistance, and 3 potentially rate-controlling steps in muscle glucose metabolism have been implicated in its pathogenesis: glycogen synthase, hexokinase, and GLUT4 (the major insulin-stimulated glucose transporter). Results from recent studies using nuclear magnetic resonance (NMR) spectroscopy implicate intracellular defects in glucose transport as the rate-controlling step for insulin-mediated glucose uptake in muscle. These alterations in glucose transport activity are likely the result of dysregulation of intramyocellular fatty acid metabolism, whereby fatty acids cause insulin resistance by activation of a serine kinase cascade, leading to decreased insulin-stimulated insulin receptor substrate (IRS)-1 tyrosine phosphorylation and decreased IRS-1-associated phosphatidylinositol 3-kinase activity, a required step in insulin-stimulated glucose transport into muscle. The thiazolidinedione class of antidiabetic agents directly targets insulin resistance in skeletal muscle by improving glucose transport activity and insulin-stimulated muscle glycogen synthesis. Although the precise mechanism of action is not known, recent NMR studies support the hypothesis that these agents improve insulin action in skeletal muscle and liver by promoting a redistribution of fat out of these tissues and into peripheral adipocytes.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources