Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Clinical Trial
. 2002 Oct;35(10):1307-13.
doi: 10.1016/s0021-9290(02)00168-9.

Modified pressure distribution patterns in walking following reduction of plantar sensation

Affiliations
Clinical Trial

Modified pressure distribution patterns in walking following reduction of plantar sensation

Eric Eils et al. J Biomech. 2002 Oct.

Abstract

The aim of the present study was to investigate the influence of reduced plantar sensation on pressure distribution patterns during gait of 40 healthy subjects (25.3+/-3.3 yr, 70.8+/-10.6 kg and 176.5+/-7.8 cm) with no history of sensory disorders. Plantar sensation in the subjects was reduced by using an ice immersion approach, and reduced sensitivity was tested with Semmes-Weinstein monofilaments. All subjects performed six trials of barefoot walking over a pressure distribution platform under normal as well as iced conditions. Plantar cutaneous sensation was significantly reduced after the cooling procedure (p<0.0001). Pressure distribution analysis showed substantially modified plantar pressure distribution patterns during the roll-over process (ROP) under iced conditions. Analysis of peak pressures revealed significant reductions under the toes and under the heel (p<0.001). The contact time and the relative impulse for the whole foot did not change significantly between the two conditions. For the different areas, a significant load shift from the heel and toes towards the central and lateral forefoot and the lateral midfoot was observed. The results indicate the strong influence of reduced afferent information of the sole of the foot on the ROP in walking.

PubMed Disclaimer

MeSH terms

LinkOut - more resources