Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 Apr;101(4):1223-1229.
doi: 10.1104/pp.101.4.1223.

Maintenance of Chloroplast Components during Chromoplast Differentiation in the Tomato Mutant Green Flesh

Affiliations

Maintenance of Chloroplast Components during Chromoplast Differentiation in the Tomato Mutant Green Flesh

A. Y. Cheung et al. Plant Physiol. 1993 Apr.

Abstract

During ripening of tomato (Lycopersicon esculentum) fruit, chloroplasts develop into chromoplasts. The chloroplast-chromoplast transition is marked by the accumulation of carotenoids and the disappearance of chlorophyll, the degradation of the highly structured thylakoid membrane system, and a reduction in the levels of proteins and mRNAs associated with photosynthesis. In the tomato mutant green flesh (gf), detectable amounts of chlorophyll remain in the ripe, mutant fruit, giving rise to a rusty red fruit color and suggesting that at least chlorophyll degradation is defective in the mutant. We show here that the ultrastructure of the plastids in the ripe gf fruit maintained significant amouonts of the chloroplast thylakoid grana along with structures characteristic of tomato chromoplasts. The maintenance of chloroplast structure in the gf ripe fruit was paralleled on the molecular level by the retention of plastid photosynthetic components that normally decline significantly in ripening tomato fruits. These included the light-harvesting chlorophyll a/b-binding proteins of photosystem II, the second electron accepting plastoquinone of photosystem II binding protein, the large and small subunits of ribulose bisphosphate carboxylase/oxygenase, the 33-kD oxygen evolution protein, and cytochrome b559. Similarly, photosynthetic transcripts, cab, psbA, rbcL, rbcS, and psbE mRNAs, also accumulated to higher levels in ripening gf fruit than wild type. It is interesting that the levels of some of these transcripts, especially cab mRNA, were noticeably higher in the mature gf green fruit than in the corresponding wild-type fruit. This suggests that the onset of the effect from the gf mutation might be earlier than fruit ripening. We also observed that when chloroplast formation was blocked during the development and ripening of gf fruit, these mutant fruits were bright red and their chromoplasts were indistinguishable from those found in wild-type ripe fruits grown and ripened either in the dark or in the light. These results suggest that the lesion in gf may alleviate conditions associated with chloroplast deterioration during the chloroplast-chromoplast transition in tomato ripening but has no direct effect on chromoplast differentiation per se. The ultrastructure of gf provides unequivocal evidence that, in ripening tomato, chromoplasts indeed differentiate from preexisting chloroplasts; on the other hand, chromoplast differentiation in the dark-matured and -ripened tomato fruits indicates that chromoplast development can be a process entirely independent of the chloroplasts.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Plant Physiol. 1988 May;87(1):239-43 - PubMed
    1. J Mol Biol. 1991 Dec 20;222(4):937-61 - PubMed
    1. Proc Natl Acad Sci U S A. 1984 Apr;81(7):1991-5 - PubMed
    1. Plant Physiol. 1987 Jul;84(3):911-7 - PubMed
    1. EMBO J. 1990 Dec;9(12):4197-203 - PubMed

LinkOut - more resources