Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 Dec;103(4):1123-1131.
doi: 10.1104/pp.103.4.1123.

Two Sweetclover (Melilotus alba Desr.) Mutants Temperature Sensitive for Chlorophyll Expression

Affiliations

Two Sweetclover (Melilotus alba Desr.) Mutants Temperature Sensitive for Chlorophyll Expression

M. A. Bevins et al. Plant Physiol. 1993 Dec.

Abstract

The nonallelic sweetclover (Melilotus alba Desr.) mutants U371 (ch10/ch10 genotype) and U372 (ch11/ch11 genotype) are derived from the U389 (+/+ genotype) parental strain. Growth of the U389 strain at a temperature of 17 or 26[deg]C results in plants normally green in appearance. The U371 and U372 mutant plants grown at 26[deg]C are slightly to moderately chlorophyll (Chl) deficient and have decreased Chl b/a ratios. Growth of the mutants at 17[deg]C results in plants severely deficient in Chl a, with markedly reduced levels of carotenoids except for violaxanthin, and with negligible amounts of Chl b or apoproteins for the light-harvesting complex of photosystem II. If mutant plants grown at 17[deg]C are transferred to 26[deg]C, during the next 20 d the amount of Chl per fresh weight will increase 5-fold and both the Chl b/a ratio and the expression of the light-harvesting complex apoproteins will progressively increase. Studies of the U371 mutant during the temperature-induced greening demonstrate progressive changes in chloroplast ultra-structure and leaf carbon isotope fractionation that parallel the increases in Chl. Changes observed in the leaf carbon isotope fractionation in the mutant suggest that, in addition to the already known effects of various abiotic factors, structural and metabolic internal factors can also influence whether the limitation in CO2 fixation is at the level of diffusion or carboxylation. Such temperature-initiated progressive greening in these and similar mutants may make them useful tools to elucidate not only the biosynthesis and assembly of the photosynthetic apparatus, but also physiological phenomena such as the influence of light-driven energy production on the overall carbon isotope fractionation during photosynthesis.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Nature. 1970 Aug 15;227(5259):680-5 - PubMed
    1. Biochem Genet. 1990 Feb;28(1-2):31-40 - PubMed
    1. Plant Physiol. 1970 Aug;46(2):247-9 - PubMed
    1. Plant Physiol. 1988 May;87(1):172-5 - PubMed
    1. Plant Physiol. 1986 Jun;81(2):329-34 - PubMed

LinkOut - more resources