Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 Feb;104(2):649-655.
doi: 10.1104/pp.104.2.649.

Iron Transport to Developing Ovules of Pisum sativum (I. Seed Import Characteristics and Phloem Iron-Loading Capacity of Source Regions)

Affiliations

Iron Transport to Developing Ovules of Pisum sativum (I. Seed Import Characteristics and Phloem Iron-Loading Capacity of Source Regions)

M. A. Grusak. Plant Physiol. 1994 Feb.

Abstract

To understand the processes that control Fe transport to developing seeds, we have characterized seed growth and Fe accretion and have developed a radiotracer technique for quantifying phloem Fe loading in vegetative source regions of Pisum sativum. In hydroponically grown plants of cv Sparkle, developing ovules exhibited a seed-growth period of 22 d, with Fe import occurring throughout the 22-d period. Average Fe content of mature seeds was 19 [mu]g. Source tissues of intact plants were abraded and pulse labeled for 4 h with 100 [mu]M 59Fe(III)-citrate. Fe was successfully phloem loaded and transported to seeds from leaflets, stipules, and pod walls. Total export of 59Fe from labeled source regions was used to calculate tissue-loading rates of 36, 40, and 51 pmol of Fe cm-2 h-1 for the leaflet, stipule, and pod wall surfaces, respectively. By comparison, surface area measurements, along with seed-growth results, allowed us to calculate average theoretical influx values of 42 or 68 pmol of Fe cm-2 h-1 for vegetative tissues at nodes with one or two pods, respectively. Additional studies with the regulatory pea mutant, E107 (a single-gene mutant of cv Sparkle that can overaccumulate Fe), enabled us to increase Fe delivery endogenously to the vegetative tissues. A 36-fold increase in Fe content of E107 leaves, relative to Sparkle, resulted in no increase in Fe content of E107 seeds. Based on these findings, we hypothesized that Fe is phloem loaded in a chelated form, and the expression/synthesis of the endogenous chelator is an important factor in the control of Fe transport to the seeds.

PubMed Disclaimer

References

    1. Plant Physiol. 1989 May;90(1):151-6 - PubMed
    1. Plant Physiol. 1991 Oct;97(2):537-44 - PubMed
    1. Plant Physiol. 1990 Nov;94(3):1353-7 - PubMed
    1. Plant Physiol. 1982 Nov;70(5):1436-43 - PubMed
    1. Biochem J. 1990 Jul 1;269(1):79-84 - PubMed