Molecular mechanics of mouse cardiac myosin isoforms
- PMID: 12234796
- DOI: 10.1152/ajpheart.00274.2002
Molecular mechanics of mouse cardiac myosin isoforms
Erratum in
- Am J Physiol Heart Circ Physiol 2002 Dec;283(6):following table of contents
Abstract
Two myosin isoforms are expressed in myocardium, alphaalpha-homodimers (V(1)) and betabeta-homodimers (V(3)). V(1) exhibits higher velocities and myofibrillar ATPase activities compared with V(3). We also observed this for cardiac myosin from normal (V(1)) and propylthiouracil-treated (V(3)) mice. Actin velocity in a motility assay (V(actin)) over V(1) myosin was twice that of V(3) as was the myofibrillar ATPase. Myosin's average force (F(avg)) was similar for V(1) and V(3). Comparing V(actin) and F(avg) across species for both V(1) and V(3), our laboratory showed previously (VanBuren P, Harris DE, Alpert NR, and Warshaw DM. Circ Res 77: 439-444, 1995) that mouse V(1) has greater V(actin) and F(avg) compared with rabbit V(1). Mouse V(3) V(actin) was twice that of rabbit V(actin). To understand myosin's molecular structure and function, we compared alpha- and beta-cardiac myosin sequences from rodents and rabbits. The rabbit alpha- and beta-cardiac myosin differed by eight and four amino acids, respectively, compared with rodents. These residues are localized to both the motor domain and the rod. These differences in sequence and mechanical performance may be an evolutionary attempt to match a myosin's mechanical behavior to the heart's power requirements.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
