Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Sep 17;106(12):1493-9.
doi: 10.1161/01.cir.0000029747.53262.5c.

Human cardiac inwardly-rectifying K+ channel Kir(2.1b) is inhibited by direct protein kinase C-dependent regulation in human isolated cardiomyocytes and in an expression system

Affiliations

Human cardiac inwardly-rectifying K+ channel Kir(2.1b) is inhibited by direct protein kinase C-dependent regulation in human isolated cardiomyocytes and in an expression system

Christoph A Karle et al. Circulation. .

Abstract

Background: Protein kinases A (PKA) and C (PKC) are activated in ischemic preconditioning and heart failure, conditions in which patients develop arrhythmias. The native inward rectifier potassium current (IK1) plays a central role in the stabilization of the resting membrane potential and the process of arrhythmogenesis. This study investigates the functional relationship between PKC and IK1.

Methods and results: In whole-cell patch-clamp experiments with isolated human atrial cardiomyocytes, the IK1 was reduced by 41% when the nonspecific activator of PKC phorbol 12 myristate 13-acetate (PMA; 100 nmol/L) was applied. To investigate the effects of PKC on cloned channel underlying parts of the native IK1, we expressed Kir(2.1b) heterologously in Xenopus oocytes and measured currents with the double-electrode voltage-clamp technique. PMA decreased the current by an average of 68%, with an IC50 of 0.68 nmol/L. The inactive compound 4-alpha-PMA was ineffective. Thymeleatoxin and 1-oleolyl-2-acetyl-sn-glycerol, 2 specific activators of PKC, produced effects similar to those of PMA. Inhibitors of PKC, ie, staurosporine and chelerytrine, could inhibit the PMA effect (1 nmol/L) significantly. After mutation of the PKC phosphorylation sites (especially S64A and T353A), PMA became ineffective.

Conclusions: The human IK1 in atrial cardiomyocytes and one of its underlying ion channels, the Kir(2.1b) channel, is inhibited by PKC-dependent signal transduction pathways, possibly contributing to arrhythmogenesis in patients with structural heart disease in which PKC is activated.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources