Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Aug;9(8):1357-1368.
doi: 10.1105/tpc.9.8.1357.

The Frequency and Degree of Cosuppression by Sense Chalcone Synthase Transgenes Are Dependent on Transgene Promoter Strength and Are Reduced by Premature Nonsense Codons in the Transgene Coding Sequence

Affiliations

The Frequency and Degree of Cosuppression by Sense Chalcone Synthase Transgenes Are Dependent on Transgene Promoter Strength and Are Reduced by Premature Nonsense Codons in the Transgene Coding Sequence

Q. Que et al. Plant Cell. 1997 Aug.

Abstract

By comparing the effects of strong and weak promoters that drive sense chalcone synthase (Chs) transgenes in large populations of independently transformed plants, we show here that a strong transgene promoter is required for high-frequency cosuppression of Chs genes and for production of the full range of cosuppression phenotypes. In addition, sense Chs transgenes driven by a cauliflower mosaic virus 35S promoter possessing a single copy of the upstream activator region (UAR) were found to produce a significantly lower degree of cosuppression than they did when the transgene promoter possessed two or four copies of the UAR. It has been shown elsewhere that 35S promoter strength increases with increasing UAR copy number. Frameshift mutations producing early nonsense codons in the Chs transgene were found to reduce the frequency and the degree of cosuppression. These results suggest that promoter strength and transcript stability determine the degree of cosuppression, supporting the hypothesis that sense cosuppression is a response to the accumulation of transcripts at high concentrations. This conclusion was shown to apply to single-copy transgenes but not necessarily to inversely repeated transgenes. The results presented here also have significance for efficient engineering of cosuppression phenotypes for use in research and agriculture.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Cell. 1997 Jan 10;88(1):1-4 - PubMed
    1. Plant Cell. 1996 Feb;8(2):179-188 - PubMed
    1. Curr Opin Cell Biol. 1995 Jun;7(3):399-405 - PubMed
    1. Mol Gen Genet. 1990 Dec;224(3):477-81 - PubMed
    1. EMBO J. 1992 Jan;11(1):233-40 - PubMed

LinkOut - more resources