Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Clinical Trial
. 2002 Sep;24(6):531-6.
doi: 10.1179/016164102101200492.

Feasibility and limitations of magnetoencephalographic detection of epileptic discharges: simultaneous recording of magnetic fields and electrocorticography

Affiliations
Clinical Trial

Feasibility and limitations of magnetoencephalographic detection of epileptic discharges: simultaneous recording of magnetic fields and electrocorticography

Hiroshi Shigeto et al. Neurol Res. 2002 Sep.

Abstract

Magnetoencephalography (MEG) is considered clinically useful in localizing the epileptogenic focus in partial epilepsy. However, the relationship between the extent of the brain involved in paroxysmal activities and the magnetic field changes at the scalp has not been fully clarified. Furthermore, whether paroxysmal activities generated in deep brain structures such as the hippocampus can be detected magnetically is uncertain. Eight patients with temporal lobe epilepsy and two with extratemporal lobe epilepsy underwent chronic recording from subdural electrodes. Magnetic and electrocorticographic discharges representing epileptic activity were recorded simultaneously. MEG recorded magnetic field changes originating from paroxysmal activity in the superiolateral cerebral cortex when the amplitudes of the electrical paroxysmal activities exceeded 100 microV and extended over more than 3 cm2 of cortical surface. MEG failed to record paroxysmal activity localized to the medial temporal lobe. MEG is often useful in identifying a spike focus in the superiolateral aspects of the cerebral hemisphere, but not discharges arising from the medial temporal lobe. Rapid decay of the magnetic field is likely to be the reason for this limited sensitivity to medial discharges.

PubMed Disclaimer

LinkOut - more resources