Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Oct;143(10):4038-47.
doi: 10.1210/en.2002-220221.

Anabolic actions of parathyroid hormone during bone growth are dependent on c-fos

Affiliations

Anabolic actions of parathyroid hormone during bone growth are dependent on c-fos

Burak Demiralp et al. Endocrinology. 2002 Oct.

Abstract

PTH has anabolic and catabolic actions in bone that are not clearly understood. The protooncogene c-fos and other activating protein 1 family members are critical transcriptional mediators in bone, and c-fos is up-regulated by PTH. The purpose of this study was to examine the mechanisms of PTH and the role of c-fos in PTH-mediated anabolic actions in bone. Mice with ablation of c-fos (-/-) and their wild-type (+/+) and heterozygous (+/-) littermates were administered PTH for 17 d. The +/+ mice had increased femoral bone mineral density (BMD), whereas -/- mice had reduced BMD after PTH treatment. PTH increased the ash weight of +/+ and +/-, but not -/-, femurs and decreased the calcium content of -/-, but not +/+ or +/-, femurs. Histomorphometric analysis showed that PTH increased trabecular bone volume in c-fos +/+, +/- vertebrae, but, in contrast, decreased trabecular bone in -/- vertebrae. Serum calcium levels in +/+ mice were greater than those in -/- mice, and PTH increased calcium in -/- mice. Histologically, PTH resulted in an exacerbation of the already widened growth plate and zone of hypertrophic chondrocytes but not the proliferating zone in -/- mice. PTH also increased calvarial thickness in +/+ mice, but not -/- mice. The c-fos -/- mice had lower bone sialoprotein and osteocalcin (OCN), but unaltered PTH-1 receptor mRNA expression in calvaria, suggesting an alteration in extracellular matrix. Acute PTH injection (8 h) resulted in a decrease in osteocalcin mRNA expression in wild-type, but unaltered expression in -/-, calvaria. These data indicate that c-fos plays a critical role in the anabolic actions of PTH during endochondral bone growth.

PubMed Disclaimer

Publication types

MeSH terms