Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2002 Jul;40(7):653-62.
doi: 10.1515/CCLM.2002.112.

Mechanisms of hyperammonemia

Affiliations
Review

Mechanisms of hyperammonemia

Claude Bachmann. Clin Chem Lab Med. 2002 Jul.

Abstract

Hyperammonemia is mainly found in hepatic encephalopathy and in genetic defects of the urea cycle or other pathways of the intermediary metabolism. Clinically a difference has to be made between chronic moderate hyperammonemia and acutely increased concentrations. Pathogenetic mechanisms of ammonia toxicity to the brain are partly unraveled. In some animal models confounding variables, such as the reduced intake of food and amino acid imbalance due to liver insufficiency, do not allow to establish unequivocal causal relationships between the ammonia concentration and measured effects. In chronic moderate hyperammonemia an increased flux through the serotonin pathway is a key factor. It is caused by an increased transport of large neutral amino acids (including tryptophan) through the blood-brain barrier, accentuated by the imbalance of plasma amino acids in hepatic insufficiency. It is stimulated by D- or L-glutamine. Evidence is presented showing that a functioning gamma-glutamyl cycle (glutathione formation) is a prerequisite. In acute hyperammonemia involvement of NMDA receptors, glutamate, NO and cGMP plays an additional role. In hyperammonemic crises the increased cerebral blood flow leads to brain edema; factors discussed here are increased osmolytes in astrocytes and serotoninergic activity. Recent data indicate that axonal development is affected by ammonia and can be normalized in vitro by creatine supplementation in developing mixed brain cell aggregate cultures, thus reviving the old hypothesis of the impact of hyperammonemia on energy metabolism in the developing brain that could cause mental retardation.

PubMed Disclaimer

Publication types

LinkOut - more resources