Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Oct 2;124(39):11596-7.
doi: 10.1021/ja026639f.

Direct observation of the multistep helix formation of poly-L-glutamic acids

Affiliations

Direct observation of the multistep helix formation of poly-L-glutamic acids

Tetsunari Kimura et al. J Am Chem Soc. .

Abstract

The helix formation dynamics of poly-L-glutamic acids (PGAs) were observed by the microsecond-resolved Fourier transform infrared (FTIR) and circular dichroism (CD) spectroscopies. The helix formation of 34-residue PGA from random coil at pH (or pD for FTIR) 8.0 was initiated by a pH jump to 4.9 using the rapid solution mixer whose mixing dead time is 50 micros. The amide I' line in the time-resolved FTIR spectra exhibited the fast (<100 micros) increase of the total helical content. The time-resolved CD spectra of the same process also showed the fast (<150 micros) formation of short helical segments (5 +/- 1 residues), which was followed by the slower (<1 ms) elongation of the short helices to longer helices (>10 residues). Similar dynamics were observed for the same pH jump of approximately 190-residue PGA, although there were additional steps that made the helix formation of approximately 190-residue PGA more complex. The observed multistep helix formation is likely caused by the strong hydrogen-bonding interactions between the protonated side chains of PGAs.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources