Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Nov 29;277(48):45920-7.
doi: 10.1074/jbc.M204196200. Epub 2002 Sep 23.

Ubiquitylation of BAG-1 suggests a novel regulatory mechanism during the sorting of chaperone substrates to the proteasome

Affiliations
Free article

Ubiquitylation of BAG-1 suggests a novel regulatory mechanism during the sorting of chaperone substrates to the proteasome

Simon Alberti et al. J Biol Chem. .
Free article

Erratum in

  • J Biol Chem. 2003 May 16;278(20):15702-3

Abstract

BAG-1 is a ubiquitin domain protein that links the molecular chaperones Hsc70 and Hsp70 to the proteasome. During proteasomal sorting BAG-1 can cooperate with another co-chaperone, the carboxyl terminus of Hsc70-interacting protein CHIP. CHIP was recently identified as a Hsp70- and Hsp90-associated ubiquitin ligase that labels chaperone-presented proteins with the degradation marker ubiquitin. Here we show that BAG-1 itself is a substrate of the CHIP ubiquitin ligase in vitro and in vivo. CHIP mediates attachment of ubiquitin moieties to BAG-1 in conjunction with ubiquitin-conjugating enzymes of the Ubc4/5 family. Ubiquitylation of BAG-1 is strongly stimulated when a ternary Hsp70.BAG-1.CHIP complex is formed. Complex formation results in the attachment of an atypical polyubiquitin chain to BAG-1, in which the individual ubiquitin moieties are linked through lysine 11. The noncanonical polyubiquitin chain does not induce the degradation of BAG-1, but it stimulates a degradation-independent association of the co-chaperone with the proteasome. Remarkably, this stimulating activity depends on the simultaneous presentation of the integrated ubiquitin-like domain of BAG-1. Our data thus reveal a cooperative recognition of sorting signals at the proteolytic complex. Attachment of polyubiquitin chains to delivery factors may represent a novel mechanism to regulate protein sorting to the proteasome.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources