Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1975 Jul;80(3):421-43.
doi: 10.1093/genetics/80.3.421.

A transforming marker that produces merodiploids with high efficiency and stable transformants with low efficiency in Streptococcus

A transforming marker that produces merodiploids with high efficiency and stable transformants with low efficiency in Streptococcus

A W Ravin et al. Genetics. 1975 Jul.

Abstract

A mutation (ery-r8) conferring a high level of resistance to erythromycin in the Challis strain of Streptoccus sanguis can be transferred to wild-type erythromycin-sensitive recipients via single molecules of donor DNA. The transformants thus produced are of two types: (1) cells slightly more resistant to erythromycin than wild-type and capable of segregating (at a frequency of 2 X 10(-4)/bacterium/generation) either wild-type or highly-resistant cells like the original donor type; (2) cells phenotypically and genotypically identical to the original donor type. The unstable diploids (ery-r8/+) occur with a frequency equivalent to that obtained with high-efficiency (HE) markers, whereas the stable donor-type (ery-r8) transformants occur with about five hundred times lower frequency. Penetration of the wild-type recipient by more than one molecule of DNA bearing the ery-r8 marker increases by as much as seven times the incidence of stable transformants. UV-irradiation of molecules bearing the ery-r8 marker diminishes their ability to cooperate in producing a stable transformant, although the UV sensitivity of stable transformant production by a single DNA molecule is not different from that of diploid production. Hence, stable transformants do not appear to be produced by a process typical of low efficiency (LE) markers, which are generally highly sensitive to ultraviolet irradiation. Moreover, stable ery-r8 transformants are produced with equally low frequencies in strains of S. pneumoniae that discriminate (hex+) and fail to discriminate (hex--) between HE and LE markers. We postulate that all transformations by the ery-r8 marker result in ery-r8/+ diploids, and that segregation results in the infrequent stable transformants of the original donor type. This hypothesis is supported by the observations that rifampin treatment of ery-r8/+ populations increases the frequency of segregation and similar treatment of wild-type recipients under-going transformation by the ery-r8 marker increases the frequency of stable transformants.--In producing the ery-r8/+ transformant the r8 allele is integrated close to the site of its wild-type homolog, since single molecules of DNA from this transformant can be shown to carry both alleles. Segregation of either the ery-r8 or + allele is not detectably enhanced by acridine orange or thymidine deprivation.--The ery-r8 marker occurs close to a site of mutation (ery-r2) which confers erythromycin resistance upon ribosomes. When the r2 and r8 markers are jointly transferred, ery-r2-r8/+ genomes are produced in which the r2 marker is stably integrated but the r8 marker is unstably adjoined to its wild-type homolog. Thus, the duplicated region can be quite short. When the ery-r8 marker is stably integrated, the region of the marker is refractory to subsequent transformation. Markers with properties like ery-r8 are not particularly rare, being found with a frequency of about 4% among spontaneous mutations to erythromycin resistance.

PubMed Disclaimer

Similar articles

References

    1. Proc Natl Acad Sci U S A. 1960 Jan;46(1):57-64 - PubMed

Publication types