Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2002 Nov;205(Pt 21):3299-306.
doi: 10.1242/jeb.205.21.3299.

Ultraviolet colour perception in European starlings and Japanese quail

Affiliations
Comparative Study

Ultraviolet colour perception in European starlings and Japanese quail

Emma L Smith et al. J Exp Biol. 2002 Nov.

Abstract

Whereas humans have three types of cone photoreceptor, birds have four types of single cones and, unlike humans, are sensitive to ultraviolet light (UV, 320-400 nm). Most birds are thought to have either a violet-sensitive single cone that has some sensitivity to UV wavelengths (for example, many non-passerine species) or a single cone that has maximum sensitivity to UV (for example, oscine passerine species). UV sensitivity is possible because, unlike humans, avian ocular media do not absorb UV light before it reaches the retina. The different single cone types and their sensitivity to UV light give birds the potential to discriminate reflectance spectra that look identical to humans. It is clear that birds use UV signals for a number of visual tasks, but there are few studies that directly demonstrate a role for UV in the detection of chromaticity differences (i.e. colour vision) as opposed to achromatic brightness. If the output of the violet/UV cone is used in achromatic visual tasks, objects reflecting more UV will appear brighter to the bird. If, however, the output is used in a chromatic mechanism, birds will be able to discriminate spectral stimuli according to the amount of reflected light in the UV part of the spectrum relative to longer wavelengths. We have developed a UV 'colour blindness' test, which we have given to a passerine (European starling) and a non-passerine (Japanese quail) species. Both species learnt to discriminate between a longwave control of orange vs red stimuli and UV vs 'non-UV' stimuli, which were designed to be impossible to differentiate by achromatic mechanisms. We therefore conclude that the output of the violet/UV cone is involved in a chromatic colour vision system in these two species.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources