A semigroup approach to the strong ergodic theorem of the multistate stable population process
- PMID: 12341714
- DOI: 10.1080/08898488809525260
A semigroup approach to the strong ergodic theorem of the multistate stable population process
Abstract
"In this paper we first formulate the dynamics of multistate stable population processes as a partial differential equation. Next, we rewrite this equation as an abstract differential equation in a Banach space, and solve it by using the theory of strongly continuous semigroups of bounded linear operators. Subsequently, we investigate the asymptotic behavior of this semigroup to show the strong ergodic theorem which states that there exists a stable distribution independent of the initial distribution. Finally, we introduce the dual problem in order to obtain a logical definition for the reproductive value and we discuss its applications." (SUMMARY IN FRE)
excerpt
Similar articles
-
Asymptotic properties of the inhomogeneous Lotka-Von Foerster system.Math Popul Stud. 1988;1(3):247-64, 317. doi: 10.1080/08898488809525277. Math Popul Stud. 1988. PMID: 12281208
-
Stable growth in native-dependent multistate population dynamics.Math Popul Stud. 1988;1(2):157-71, 207. doi: 10.1080/08898488809525269. Math Popul Stud. 1988. PMID: 12280985
-
Some aspects of modern population mathematics.Can J Stat. 1981;9(2):173-94. Can J Stat. 1981. PMID: 12312570
-
Population growth under changed fertility schedule in stability conditions.Math Popul Stud. 1996;6(1):55-65, 67. doi: 10.1080/08898489609525421. Math Popul Stud. 1996. PMID: 12292127
-
Capital accumulation, aspiration adjustment, and population growth: limit cycles in an Easterlin-type model.Math Popul Stud. 1990;2(2):93-103, 161. doi: 10.1080/08898489009525296. Math Popul Stud. 1990. PMID: 12282602
Cited by
-
On the probability of extinction in a periodic environment.J Math Biol. 2014 Feb;68(3):533-48. doi: 10.1007/s00285-012-0623-9. Epub 2012 Nov 10. J Math Biol. 2014. PMID: 23143337
-
Evolution of heterogeneity under constant and variable environments.PLoS One. 2021 Sep 13;16(9):e0257377. doi: 10.1371/journal.pone.0257377. eCollection 2021. PLoS One. 2021. PMID: 34516578 Free PMC article.
-
An age-structured epidemic model for the demographic transition.J Math Biol. 2018 Nov;77(5):1299-1339. doi: 10.1007/s00285-018-1253-7. Epub 2018 Jul 31. J Math Biol. 2018. PMID: 30066089
-
Age-structured homogeneous epidemic systems with application to the MSEIR epidemic model.J Math Biol. 2007 Jan;54(1):101-46. doi: 10.1007/s00285-006-0033-y. Epub 2006 Oct 21. J Math Biol. 2007. PMID: 17058079