Protective role of magnesium in cardiovascular diseases: a review
- PMID: 12349904
- DOI: 10.1023/a:1019998702946
Protective role of magnesium in cardiovascular diseases: a review
Abstract
A considerable number of experimental, epidemiological and clinical studies are now available which point to an important role of Mg2+ in the etiology of cardiovascular pathology. In human subjects, hypomagnesemia is often associated with an imbalance of electrolytes such as Na+, K+ and Ca2+. Abnormal dietary deficiency of Mg2+ as well as abnormalities in Mg2+ metabolism play important roles in different types of heart diseases such as ischemic heart disease, congestive heart failure, sudden cardiac death, atheroscelerosis, a number of cardiac arrhythmias and ventricular complications in diabetes mellitus. Mg2+ deficiency results in progressive vasoconstriction of the coronary vessels leading to a marked reduction in oxygen and nutrient delivery to the cardiac myocytes. Numerous experimental and clinical data have suggested that Mg2+ deficiency can induce elevation of intracellular Ca2+ concentrations, formation of oxygen radicals, proinflammatory agents and growth factors and changes in membrane perrmeability and transport processes in cardiac cells. The opposing effects of Mg2+ and Ca2+ on myocardial contractility may be due to the competition between Mg2+ and Ca2+ for the same binding sites on key myocardial contractile proteins such as troponin C, myosin and actin. Stimulants, for example, catecholamines can evoke marked Mg2+ efflux which appears to be associated with a concomitant increase in the force of contraction of the heart. It has been suggested that Mg2+ efflux may be linked to the Ca2+ signalling pathway. Depletion of Mg2+ by alcohol in cardiac cells causes an increase in intracellular Ca2+, leading to coronary artery vasospasm, arrhythmias, ischemic damage and cardiac failure. Hypomagnesemia is commonly associated with hypokalemia and occurs in patients with hypertension or myocardial infarction as well as in chronic alcoholism. The inability of the senescent myocardium to respond to ischemic stress could be due to several reasons. Mg2+ supplemented K+ cardioplegia modulates Ca2+ accumulation and is directly involved in the mechanisms leading to enhanced post ischemic functional recovery in the aged myocardium following ischemia. While many of these mechanisms remain controversial and in some cases speculative, the beneficial effects related to consequences of Mg2+ supplementation are apparent. Further research are needed for the incorporation of these findings toward the development of novel myocardial protective role of Mg2+ to reduce morbidity and mortality of patients suffering from a variety of cardiac diseases.
Similar articles
-
New perspectives on the role of magnesium in the pathophysiology of the cardiovascular system. II. Experimental aspects.Magnesium. 1985;4(5-6):245-71. Magnesium. 1985. PMID: 3914581 Review.
-
[Role of magnesium in cardiac metabolism].Clin Calcium. 2005 Nov;15(11):77-83. Clin Calcium. 2005. PMID: 16272616 Review. Japanese.
-
Interactions of Mg and K on blood vessels--aspects in view of hypertension. Review of present status and new findings.Magnesium. 1984;3(4-6):175-94. Magnesium. 1984. PMID: 6399341 Review.
-
Magnesium, hypertensive vascular diseases, atherogenesis, subcellular compartmentation of Ca2+ and Mg2+ and vascular contractility.Miner Electrolyte Metab. 1993;19(4-5):323-36. Miner Electrolyte Metab. 1993. PMID: 8264520 Review.
-
Interactions of magnesium and potassium in the pathogenesis of cardiovascular disease.Magnesium. 1984;3(4-6):301-14. Magnesium. 1984. PMID: 6536839
Cited by
-
Dietary and plasma magnesium and risk of coronary heart disease among women.J Am Heart Assoc. 2013 Mar 18;2(2):e000114. doi: 10.1161/JAHA.113.000114. J Am Heart Assoc. 2013. PMID: 23537810 Free PMC article.
-
High Expression of SLC41A3 Correlates with Poor Prognosis in Hepatocellular Carcinoma.Onco Targets Ther. 2021 May 5;14:2975-2988. doi: 10.2147/OTT.S296187. eCollection 2021. Onco Targets Ther. 2021. PMID: 33981147 Free PMC article.
-
Effect of mineral elements on the formation of gallbladder stones using spectroscopic techniques.Anal Bioanal Chem. 2023 Oct;415(25):6279-6289. doi: 10.1007/s00216-023-04904-3. Epub 2023 Aug 16. Anal Bioanal Chem. 2023. PMID: 37584676
-
Magnesium: Pathophysiological mechanisms and potential therapeutic roles in intracerebral hemorrhage.Neural Regen Res. 2019 Jul;14(7):1116-1121. doi: 10.4103/1673-5374.251189. Neural Regen Res. 2019. PMID: 30804233 Free PMC article.
-
Nutrients and chemical composition of Desplatsia dewevrei.Food Sci Nutr. 2019 Apr 9;7(5):1768-1777. doi: 10.1002/fsn3.1019. eCollection 2019 May. Food Sci Nutr. 2019. PMID: 31139390 Free PMC article.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous