Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Oct;51(10):2915-21.
doi: 10.2337/diabetes.51.10.2915.

Coordinated regulation of fat-specific and liver-specific glycerol channels, aquaporin adipose and aquaporin 9

Affiliations

Coordinated regulation of fat-specific and liver-specific glycerol channels, aquaporin adipose and aquaporin 9

Hiroshi Kuriyama et al. Diabetes. 2002 Oct.

Abstract

Plasma glycerol is a major substrate for hepatic gluconeogenesis. Aquaporin adipose (AQPap/7), an adipose-specific glycerol channel, provides fat-derived glycerol into plasma. In the present study, we cloned the coding and promoter regions of mouse aquaporin 9 (AQP9), a liver-specific glycerol channel. Fasting and refeeding of mice increased and decreased hepatic AQP9 mRNA levels, respectively. Insulin deficiency induced by streptozotocin resulted in increased hepatic AQP9 mRNA. These changes in hepatic AQP9 mRNA were accompanied by those of hepatic gluconeogenic mRNAs and plasma glycerol levels. In cultured hepatocytes, insulin downregulated AQP9 mRNA. The AQP9 promoter contained the negative insulin response element TGTTTTC at -496/-502, similar to the promoter of the AQPap/7 gene. In contrast, in insulin-resistant db+/db+ mice, AQPap/7 mRNA in fat and AQP9 mRNA in liver were increased, despite hyperinsulinemia, with high plasma glycerol and glucose levels. Glycerol infusion in the db+/db+ mice augmented hepatic glucose output. Our results indicate that coordinated regulations of fat-specific AQPap/7 and liver-specific AQP9 should be crucial to determine glucose metabolism in physiology and insulin resistance.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms