Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Sep 26;419(6905):403-7.
doi: 10.1038/nature01071. Epub 2002 Sep 1.

A cryptic protease couples deubiquitination and degradation by the proteasome

Affiliations

A cryptic protease couples deubiquitination and degradation by the proteasome

Tingting Yao et al. Nature. .

Abstract

The 26S proteasome is responsible for most intracellular proteolysis in eukaryotes. Efficient substrate recognition relies on conjugation of substrates with multiple ubiquitin molecules and recognition of the polyubiquitin moiety by the 19S regulatory complex--a multisubunit assembly that is bound to either end of the cylindrical 20S proteasome core. Only unfolded proteins can pass through narrow axial channels into the central proteolytic chamber of the 20S core, so the attached polyubiquitin chain must be released to allow full translocation of the substrate polypeptide. Whereas unfolding is rate-limiting for the degradation of some substrates and appears to involve chaperone-like activities associated with the proteasome, the importance and mechanism of degradation-associated deubiquitination has remained unclear. Here we report that the POH1 (also known as Rpn11 in yeast) subunit of the 19S complex is responsible for substrate deubiquitination during proteasomal degradation. The inability to remove ubiquitin can be rate-limiting for degradation in vitro and is lethal to yeast. Unlike all other known deubiquitinating enzymes (DUBs) that are cysteine proteases, POH1 appears to be a Zn(2+)-dependent protease.

PubMed Disclaimer

Comment in

Similar articles

Cited by

Publication types

MeSH terms