Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Dec;45(2):66-8.

Influence of vestibulo-sympathetic reflex on muscle sympathetic outflow during head-down tilt

Affiliations
  • PMID: 12353535

Influence of vestibulo-sympathetic reflex on muscle sympathetic outflow during head-down tilt

J Kawanokuchi et al. Environ Med. 2001 Dec.

Abstract

To clarify the response of muscle sympathetic nerve activity (MSNA) to static stimulation of otolith organs in a craniocaudal direction (+Gz) in humans, we examined the effect of otolith stimulation on MSNA without changing the effect of cardiopulmonary baroreceptors using a 6-8.5 degrees head-down tilt (HDT) and lower body negative pressure (LBNP) device. Before the study, we established that 6-8.5 degrees HDT with 10 mmHg LBNP caused a fluid shift to the degree that the thoracic impedance was the same as the supine position without LBNP. Subjects were young male volunteers aged 22.1 +/- 3.8 years who gave informed consent. MSNA was recorded from the tibial nerve by microneurography simultaneously with heart rate (ECG), thoracic fluid volume (impedance method), and blood pressure (tonometric method). During 6-8.5 degrees HDT with 10 mmHg LBNP, MSNA was suppressed slightly without significantly changing heart rate, thoracic impedance, or mean arterial blood pressure. The results suggest that the sympathosuppression was related not to the result of cardiopulmonary [correction of cardioplumonary] loading but to the -Gz change (caudocranial direction [correction of dirction]) of 0.1 G. It is estimated that the vestibulo-sympathetic reflex may suppress sympathetic outflow to muscles in humans.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms