Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Sep;18(3):230-5.
doi: 10.1097/00024382-200209000-00005.

Superoxide dismutase mimetics with catalase activity reduce the organ injury in hemorrhagic shock

Affiliations

Superoxide dismutase mimetics with catalase activity reduce the organ injury in hemorrhagic shock

Maya Izumi et al. Shock. 2002 Sep.

Abstract

Reactive oxygen species (ROS) contribute to the multiple organ failure (MOF) in hemorrhagic shock. Here we investigate the effects of two superoxide dismutase (SOD) mimetics with catalase activity (EUK-8 and EUK-134) on the circulatory failure and the organ injury and dysfunction associated with hemorrhagic shock in the anesthetised rat. Hemorrhage (sufficient to lower mean arterial blood pressure to 45 mmHg for 90 min) and subsequent resuscitation with shed blood resulted (within 4 h after resuscitation) in a delayed fall in blood pressure, liver injury and renal dysfunction as well as pancreatic injury. Treatment of rats on resuscitation with EUK-8 (3 mg/kg i.v. bolus followed by 3 mg/kg/h i.v. infusion) significantly attenuated liver injury, renal dysfunction and pancreatic injury caused by hemorrhage and resuscitation. Administration of EUK-134 (3 mg/kg i.v. bolus followed by 3 mg/kg/h) reduced the liver injury and renal dysfunction (but not the pancreatic injury) caused by hemorrhagic shock. However, neither EUK-8 nor EUK-134 reduced the delayed circulatory failure associated with hemorrhagic shock. Thus, we propose that an enhanced formation of ROS contributes to the MOF in hemorrhagic shock, and that membrane-permeable SOD-mimetics with catalase activity, such as EUK-8 or EUK-134, may represent a novel therapeutic approach for the therapy of hemorrhagic shock.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources