Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Oct;116(2):192-199.
doi: 10.1034/j.1399-3054.2002.1160208.x.

Protective role of exogenous polyamines on salinity-stressed rice (Oryza sativa) plants

Affiliations

Protective role of exogenous polyamines on salinity-stressed rice (Oryza sativa) plants

Manas Kumar Chattopadhayay et al. Physiol Plant. 2002 Oct.

Abstract

Salt-tolerant Pokkali rice plants accumulate higher polyamines (PAs) such as spermidine (Spd) and spermine (Spm) in response to salinity stress, while the sensitive cultivarM-1-48 is unable to maintain high titres of these PAs under similar conditions. The effects of the triamine Spd and the tetramine Spm on physiological and biochemical changes in 12-day-old rice seedlings were investigated during salinity stress to determine whether they could protect the sensitive plants from stress effects. At physiological concentrations Spd and Spm significantly prevented the leakage of electrolytes and amino acids from roots and shoots induced by salinity stress. To different degrees they also prevented chlorophyll loss, inhibition of photochemical reactions of photosynthesis as well as downregulation of chloroplast-encoded genes like psbA, psbB, psbE and rbcL, indicating a positive correlation between salt tolerance and accumulation of higher PAs in rice. The inhibitory effect of salinity stress and its reversal by exogenous PAs were more pronounced in the salt-sensitiveM-1-48 plants than in the tolerant Pokkali plants.

PubMed Disclaimer

LinkOut - more resources