Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Oct;44(2):141-53.
doi: 10.1016/s0168-0102(02)00095-0.

Morphology of the decrementing expiratory neurons in the brainstem of the rat

Affiliations

Morphology of the decrementing expiratory neurons in the brainstem of the rat

Yoshiaki Saito et al. Neurosci Res. 2002 Oct.

Abstract

In anesthetized and artificially-ventilated rats, the morphological properties of decrementing expiratory (E-DEC) neurons were studied using intracellular recording and labeling with Neurobiotin. Sixteen E-DEC neurons were successfully labeled; ten of which were cranial motoneurons located in the facial (FN) and ambiguus (NA) nuclei. Two interneurons were labeled in the Bötzinger complex (BOT) and the ventral respiratory group (VRG) rostral to the obex, and the remaining four in the VRG caudal to the obex. All the interneurons had extensive intramedullary collaterals within the ventrolateral medulla. Terminal-like boutons were distributed ventral to the NA at the level of the BOT, both ventral to and within the NA at the level rostral to the obex and largely within the cell column tentatively designed as the ambiguous-retroambiguus complex (NA/NRA) caudal to the obex. The four interneurons in the NA/NRA had axons projecting to the spinal cord as well. The extensive intramedullary projections suggest that these E-DEC interneurons of the BOT and the VRG play a significant role in respiration. The simultaneous projections from the caudal E-DEC neurons to both the spinal cord and the NA suggest that these neurons also play integrative roles in non-respiratory behaviors including vocalization, swallowing and defecation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources