Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Oct;40(10):3776-81.
doi: 10.1128/JCM.40.10.3776-3781.2002.

Optimal testing conditions for determining MICs and minimum fungicidal concentrations of new and established antifungal agents for uncommon molds: NCCLS collaborative study

Affiliations

Optimal testing conditions for determining MICs and minimum fungicidal concentrations of new and established antifungal agents for uncommon molds: NCCLS collaborative study

A Espinel-Ingroff et al. J Clin Microbiol. 2002 Oct.

Abstract

This collaborative three-center study evaluated NCCLS M38-A document testing conditions and other testing conditions for the antifungal susceptibility testing of 35 isolates of Aspergillus nidulans, A. terreus, Bipolaris hawaiiensis, B. spicifera, Cladophialophora bantiana, Dactylaria constricta, Fusarium solani, Paecilomyces lilacinus, Scedosporium prolificans, Trichoderma longibrachiatum, and Wangiella dermatitidis for itraconazole, three new triazoles (voriconazole, posaconazole, and ravuconazole), and amphotericin B. MICs and minimum fungicidal concentrations (MFCs) were determined in each center by using four media (standard RPMI-1640 [RPMI], RPMI with 2% dextrose [RPMI-2%], antibiotic medium 3 [M3], and M3 with 2% dextrose [M3-2%]) and two criteria of MIC determination (complete growth inhibition [MICs-0] and prominent growth inhibition [MICs-2]) at 24, 48 and 72 h. MFCs were defined as the lowest drug concentrations that yielded <3 colonies (approximately 99 to 99.5% killing activity). The reproducibility (within three wells) was higher among MICs-0 (93 to 99%) with either RPMI or M3 media than among all MICs-2 (86 to 95%) for the five agents at 48 to 72 h. The agreement for MFCs was lower (86 to 94%). Based on interlaboratory agreement, the optimal testing conditions were RPMI broth, 48 to 72 h of incubation and 100% growth inhibition (MIC-0); MFCs can be obtained after MIC determination with the above optimal testing parameters. These results warrant consideration for inclusion in the future version of the NCCLS M38 document. However, the role of these in vitro values as predictors of clinical outcome remains to be established in clinical trials.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Aguilar, C., I. Pujol, J. Sala, and J. Guarro. 1998. Antifungal susceptibilities of Paecilomyces species. Antimicrob. Agents Chemother. 42:1601-1604. - PMC - PubMed
    1. Anaissie, E., H. Kantarjian, H. Ro, R. Hopfer, R. K. Rolston, V. Fainstein, and G. Bodey. 1988. The emerging role of Fusarium infections in patients with cancer. Medicine 67:77-83. - PubMed
    1. Arikan, S., M. Lozano-Chiu, V. Paetznick, S. Nangia, and J. H. Rex. 1999. Microdilution susceptibility testing of amphotericin B, itraconazole, and voriconazole against clinical isolates of Aspergillus and Fusarium species. J. Clin. Microbiol. 37:3946-3951. - PMC - PubMed
    1. Barry, A. L., M. A. Pfaller, S. D. Brown, A. Espinel-Ingroff, M. A. Ghannoum, C. Knapp, R. P. Rennie, J. H. Rex, and M. G. Rinaldi. 2000. Quality control limits for broth microdilution susceptibility tests of ten antifungal agents. J. Clin. Microbiol. 38:3457-3459. - PMC - PubMed
    1. Berenguer, J., J. L. Rodriguez-Tudela, C. Richard, M. Alvarez, M. A. Sanz, and L. Guztelurrutia and the Scedosporium prolificans Spanish Study Group. 1997. Deep infections caused by Scedosporium prolificans. A report on 16 cases in Spain and a review of the literature. Medicine 76:256-265. - PubMed

Publication types

LinkOut - more resources