Physical descriptions of experimental selectivity measurements in ion channels
- PMID: 12355255
- DOI: 10.1007/s00249-002-0239-x
Physical descriptions of experimental selectivity measurements in ion channels
Abstract
Three experiments that quantify the amount of selectivity exhibited by a biological ion channel are examined with Poisson-Nernst-Planck (PNP) theory. Conductance ratios and the conductance mole fraction experiments are examined by considering a simple model ion channel for which an approximate solution to the PNP equations with Donnan boundary conditions is derived. A more general result is derived for the Goldman-Hodgkin-Katz permeability ratio. The results show that (1) the conductance ratio measures the ratio of the diffusion coefficients of the ions inside the channel, (2) the mole fraction experiment measures the difference of the excess chemical potentials of the ions inside the channel, and (3) the permeability ratio measures both diffusion coefficients and excess chemical potentials. The results are used to divide selectivity into two components: partitioning, an equilibrium measure of how well the ions enter the channel, and diffusion, a nonequilibrium measure of how well the ions move through the channel.
Similar articles
-
The reliability of relative anion-cation permeabilities deduced from reversal (dilution) potential measurements in ion channel studies.Cell Biochem Biophys. 2006;46(2):143-54. doi: 10.1385/CBB:46:2:143. Cell Biochem Biophys. 2006. PMID: 17012755
-
Poisson-Nernst-Planck theory approach to the calculation of current through biological ion channels.IEEE Trans Nanobioscience. 2005 Mar;4(1):81-93. doi: 10.1109/tnb.2004.842495. IEEE Trans Nanobioscience. 2005. PMID: 15816174
-
Gating models of the anomalous mole-fraction effect of single-channel current in Chara.J Membr Biol. 2003 Mar 1;192(1):45-63. doi: 10.1007/s00232-002-1063-z. J Membr Biol. 2003. PMID: 12647033
-
Voltage-gated ion channels.IEEE Trans Nanobioscience. 2005 Mar;4(1):34-48. doi: 10.1109/tnb.2004.842463. IEEE Trans Nanobioscience. 2005. PMID: 15816170 Review.
-
Ionic channels: I. The biophysical basis for ion passage and channel gating.Muscle Nerve. 1986 Oct;9(8):675-99. doi: 10.1002/mus.880090803. Muscle Nerve. 1986. PMID: 2431309 Review.
Cited by
-
Improved 3D continuum calculations of ion flux through membrane channels.Eur Biophys J. 2003 Dec;32(8):689-702. doi: 10.1007/s00249-003-0330-y. Epub 2003 Jul 18. Eur Biophys J. 2003. PMID: 12879311
-
Pore dynamics and conductance of RyR1 transmembrane domain.Biophys J. 2014 Jun 3;106(11):2375-84. doi: 10.1016/j.bpj.2014.04.023. Biophys J. 2014. PMID: 24896116 Free PMC article.
-
Ions and inhibitors in the binding site of HIV protease: comparison of Monte Carlo simulations and the linearized Poisson-Boltzmann theory.Biophys J. 2009 Feb 18;96(4):1293-306. doi: 10.1016/j.bpj.2008.10.059. Biophys J. 2009. PMID: 19217848 Free PMC article.
-
Salting out the ionic selectivity of a wide channel: the asymmetry of OmpF.Biophys J. 2004 Aug;87(2):943-57. doi: 10.1529/biophysj.104/043414. Biophys J. 2004. PMID: 15298901 Free PMC article.
-
Mathematical Analysis on Current-Voltage Relations via Classical Poisson-Nernst-Planck Systems with Nonzero Permanent Charges under Relaxed Electroneutrality Boundary Conditions.Membranes (Basel). 2023 Jan 19;13(2):131. doi: 10.3390/membranes13020131. Membranes (Basel). 2023. PMID: 36837634 Free PMC article.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous