Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Sep;46(9):2514-23.
doi: 10.1002/art.10527.

Adeno-associated virus-mediated osteoprotegerin gene transfer protects against particulate polyethylene-induced osteolysis in a murine model

Affiliations

Adeno-associated virus-mediated osteoprotegerin gene transfer protects against particulate polyethylene-induced osteolysis in a murine model

Shang-You Yang et al. Arthritis Rheum. 2002 Sep.

Abstract

Objective: Osteoprotegerin (OPG), a natural negative regulator of osteoclastogenesis and bone resorption, may be a potential therapeutic agent for treatment of osteolysis-associated prosthetic joint loosening. Using an in vivo adeno-associated virus (AAV)-mediated gene transfer technique, this study was designed to evaluate the protective effects of OPG transgene against orthopedic wear debris-induced bone loss in a murine model of osteolysis.

Methods: Bone tissue was implanted into established pouches on BALB/c mice, followed by the introduction of ultra-high-molecular-weight polyethylene (UHMWPE) particles to provoke inflammation and osteolysis. The viruses encoding human OPG gene (rAAV-hOPG) or beta-galactosidase marker gene (rAAV-LacZ) were injected into the air pouches, and the tissue was harvested 7 days after viral infection for histologic and molecular analyses.

Results: Successful transgene expression was confirmed by the detection of OPG by enzyme-linked immunosorbent assay and positive X-Gal staining of pouch tissue (LacZ). Real-time polymerase chain reaction indicated significant diminishment of messenger RNA expression of osteoclast markers in OPG-transduced pouches compared with rAAV-LacZ-transduced pouches. The transduction and expression of OPG also markedly decreased the gene copies of the biologic receptor activator of nuclear factor kappaB. The expression of OPG in the bone-implanted pouch reduced bone calcium release by a mean of 39% compared with the calcium release in the other 2 groups. Computerized image analysis revealed that expression of OPG significantly protected against bone collagen loss.

Conclusion: OPG gene transfer mediated by rAAV effectively protects against particulate polyethylene-induced bone resorption in this experimental model. Data suggest that gene transfer using rAAV-OPG may be a feasible and effective therapeutic candidate to treat or prevent wear debris-associated osteolysis and aseptic loosening.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources