Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Sep;82(5):1058-64.
doi: 10.1046/j.1471-4159.2002.01030.x.

A new brain-derived neurotrophic factor transcript and decrease in brain-derived neurotrophic factor transcripts 1, 2 and 3 in Alzheimer's disease parietal cortex

Affiliations

A new brain-derived neurotrophic factor transcript and decrease in brain-derived neurotrophic factor transcripts 1, 2 and 3 in Alzheimer's disease parietal cortex

Diego Garzon et al. J Neurochem. 2002 Sep.

Abstract

Brain-derived neurotrophic factor (BDNF) supports hippocampal, cortical and basal forebrain cholinergic neurons, which lose function in Alzheimer's disease. In Alzheimer's tissues such as hippocampus and parietal cortex, brain- derived neurotrophic factor mRNA is decreased three- to four-fold compared with controls. However, the molecular mechanism of the down-regulation of BDNF in Alzheimer's disease is unknown. The human brain-derived neurotrophic factor gene has multiple promoters governing six non-coding upstream exons that are spliced to one downstream coding exon, leading to six different transcripts. Here we report an alternate human splice variant within exon 4I for a total of seven transcripts. Previous brain-derived neurotrophic factor mRNA measurements in Alzheimer's disease tissue were done using the downstream coding exon present in all transcripts. Using RT-PCR primers specific for each upstream exon, we observe a significant decrease in three human brain-derived neurotrophic factor mRNA transcripts in Alzheimer's disease samples compared with controls. Transcripts 1 and 3 each exhibit a two-fold decrease, and transcript 2 shows a five-fold decrease. There are no significant differences between control and Alzheimer's disease samples for the other transcripts, including the new splice variant. In rat, both transcripts 1 and 3 are regulated through the transcription factor cAMP response element binding protein, whose phosphorylation is decreased in the Alzheimer's disease brain. This could lead to specific down-regulation of the brain-derived neurotrophic factor transcripts shown here.

PubMed Disclaimer

Publication types

Substances

LinkOut - more resources