Linear response of the Lorenz system
- PMID: 12366180
- DOI: 10.1103/PhysRevE.66.036103
Linear response of the Lorenz system
Abstract
The present numerical study provides strong evidence that at standard parameters the response of the Lorenz system to small perturbations of the control parameter r is linear. This evidence is obtained not only directly by determining the response in the observable A(x)=z, but also indirectly by validating various implications of the assumption of a linear response, like a quadratic response at twice the perturbation frequency, a vanishing response in A(x)=x, the Kramers-Kronig relations, and relations between different response functions. Since the Lorenz system is nonhyperbolic, the present results indicate that in contrast to a recent speculation the large system limit (thermodynamic limit) need not be invoked to obtain a linear response for chaotic systems of this type.
Similar articles
-
Chen's attractor exists if Lorenz repulsor exists: the Chen system is a special case of the Lorenz system.Chaos. 2013 Sep;23(3):033108. doi: 10.1063/1.4813227. Chaos. 2013. PMID: 24089944
-
Response theory and phase transitions for the thermodynamic limit of interacting identical systems.Proc Math Phys Eng Sci. 2020 Dec;476(2244):20200688. doi: 10.1098/rspa.2020.0688. Epub 2020 Dec 23. Proc Math Phys Eng Sci. 2020. PMID: 33402877 Free PMC article.
-
A novel synchronization scheme with a simple linear control and guaranteed convergence time for generalized Lorenz chaotic systems.Chaos. 2012 Dec;22(4):043108. doi: 10.1063/1.4761818. Chaos. 2012. PMID: 23278043
-
Synchronization of chaotic systems with uncertain chaotic parameters by linear coupling and pragmatical adaptive tracking.Chaos. 2008 Dec;18(4):043129. doi: 10.1063/1.3049320. Chaos. 2008. PMID: 19123639
-
Chimera states and intermittency in an ensemble of nonlocally coupled Lorenz systems.Chaos. 2018 Jun;28(6):063119. doi: 10.1063/1.5020009. Chaos. 2018. PMID: 29960409
Cited by
-
Towards a General Theory of Extremes for Observables of Chaotic Dynamical Systems.J Stat Phys. 2014;154(3):723-750. doi: 10.1007/s10955-013-0914-6. Epub 2014 Jan 24. J Stat Phys. 2014. PMID: 24532855 Free PMC article.
-
Adiabatic dynamic causal modelling.Neuroimage. 2021 Sep;238:118243. doi: 10.1016/j.neuroimage.2021.118243. Epub 2021 Jun 8. Neuroimage. 2021. PMID: 34116151 Free PMC article.