Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Clinical Trial
. 2002 Oct 4:3:14.
doi: 10.1186/1471-2202-3-14.

Assessing the molecular genetics of attention networks

Affiliations
Clinical Trial

Assessing the molecular genetics of attention networks

John Fossella et al. BMC Neurosci. .

Abstract

Background: Current efforts to study the genetic underpinnings of higher brain functions have been lacking appropriate phenotypes to describe cognition. One of the problems is that many cognitive concepts for which there is a single word (e.g. attention) have been shown to be related to several anatomical networks. Recently, we have developed an Attention Network Test (ANT) that provides a separate measure for each of three anatomically defined attention networks.

Results: In this study we have measured the efficiency of neural networks related to aspects of attention using the ANT in a population of 200 adult subjects. We then examined genetic polymorphisms in four candidate genes (DRD4, DAT, COMT and MAOA) that have been shown to contribute to the risk of developing various psychiatric disorders where attention is disrupted. We find modest associations of several polymorphisms with the efficiency of executive attention but not with overall performance measures such as reaction time.

Conclusions: These results suggest that genetic variation may underlie inter-subject variation in the efficiency of executive attention. This study also shows that genetic influences on executive attention may be specific to certain anatomical networks rather than affecting performance in a global or non-specific manner. Lastly, this study further validates the ANT as an endophenotypic assay suitable for assessing how genes influence certain anatomical networks that may be disrupted in various psychiatric disorders.

PubMed Disclaimer

Figures

Figure 1
Figure 1
DRD4 and executive attention The Y-axis shows normalized executive attention scores (mean ± SE). The X-axis shows distributions for each genotypic class. Panel A shows the distribution of executive attention score as a function of exon III VNTR genotype in the 4-repeat absent vs. 4-repeat present groups. Panel B shows distribution of executive attention score as a function of a single nucleotide genotype (CC, CT and TT) at position -521.
Figure 2
Figure 2
COMT and DAT1 and executive attention Distributions of COMT and DAT1 genotypes vs. executive attention score. The Y-axis shows normalized executive attention scores (mean + SE). The X-axis shows the distribution for each genotypic class. Panel A shows the executive attention scores for each genotypic class at the COMT Valine 108/158 Methionine polymorphism. Panel B shows the relationship between normalized executive attention scores and genotypes at the DAT1 3' UTR repeat polymorphism.
Figure 3
Figure 3
MAOA and alerting and executive attention Distributions of MAOA-LPR genotypes vs. alerting (Panel A) and executive attention (Panel B) scores. The Y-axis shows normalized alerting or executive attention scores (mean + SE). The X-axis shows the distribution for each genotypic class at the repeat polymorphism in the promoter of MAOA. Genotypic classes are a combination of males and females however only homozygous females were chosen, given the random nature of X-chromosome inactivation.
Figure 4
Figure 4
Effect of 'high' vs. 'low' dopamine alleles on executive attention Comparison of normalized executive attention scores in genotypic classes expected to show high and low levels of dopamine. The Y-axis shows normalized executive attention scores (mean + SE). From the entire population, 30 subjects carried the COMT (Val, Val) and MAOA-LPR (4-repeat, 4-repeat) genotypes and are expected to have relatively lower dopamine levels than 20 subjects who carried the COMT (Met, Met) and MAOA-LPR (3-repeat, 3-repeat) genotypes. These distributions are referred to as 'low' dopamine and 'high' dopamine and are shown above.

Similar articles

Cited by

References

    1. Geyer MA, Braff DL. Startle habituation and sensorimotor gating in schizophrenia and related animal models. Schizophr Bull. 1987;13:643–68. - PubMed
    1. Matthysse S, Holzman PS, Lange K. The genetic transmission of schizophrenia: application of Mendelian latent structure analysis to eye tracking dysfunctions in schizophrenia and affective disorder. J Psychiatr Res. 1986;20:57–67. doi: 10.1016/0022-3956(86)90023-3. - DOI - PubMed
    1. Pantelis C, Barber FZ, Barnes TR, Nelson HE, Owen AM, Robbins TW. Comparison of set-shifting ability in patients with chronic schizophrenia and frontal lobe damage. Schizophr Res. 1999;37:251–70. doi: 10.1016/S0920-9964(98)00156-X. - DOI - PubMed
    1. Carter CS, Perlstein W, Ganguli R, Brar J, Mintun M, Cohen JD. Functional hypofrontality and working memory dysfunction in schizophrenia. Am J Psychiatry. 1998;155:1285–7. - PubMed
    1. Swaab-Barneveld H, de Sonneville L, Cohen-Kettenis P, Gielen A, Buitelaar J, Van Engeland H. Visual sustained attention in a child psychiatric population. J Am Acad Child Adolesc Psychiatry. 2000;39:651–9. doi: 10.1097/00004583-200005000-00020. - DOI - PubMed

MeSH terms

LinkOut - more resources