Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Oct 4;322(5):917-27.
doi: 10.1016/s0022-2836(02)00848-3.

p53 contains large unstructured regions in its native state

Affiliations

p53 contains large unstructured regions in its native state

Stefan Bell et al. J Mol Biol. .

Abstract

The human tumor suppressor protein p53 is understood only to some extent on a structural level. We performed a comprehensive biochemical and biophysical structure-function analysis of p53 full-length protein and p53 fragments. The analysis showed that p53 and the fragments investigated form stable functional units. Full-length p53 and the tetrameric fragment N93p53 (residues 93-393) are, however, destabilized significantly compared to the monomeric core domain (residues 94-312) and the monomeric fragment p53C312 (residues 1-312). At the physiological temperature of 37 degrees C and in the absence of modifications or stabilizing partners, wild-type p53 is more than 50% unfolded correlating with a 75% loss in DNA-binding activity. Furthermore the analysis of CD spectra revealed that full-length p53 contains large unstructured regions in its N and C-terminal parts. Our results indicate that full-length p53 is a modular protein consisting of defined structured and unstructured regions. We propose that p53 belongs to the growing family of loosely folded or partially unstructured native proteins. The lack of a rigid structure combined with the low overall stability may allow the physiological interaction of p53 with a multitude of partner proteins and the regulation of its turnover.

PubMed Disclaimer

MeSH terms

Substances

LinkOut - more resources