Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2002 Oct;17(4):1137-52.
doi: 10.14670/HH-17.1137.

Molecular mechanisms in the pathogenesis of traumatic brain injury

Affiliations
Review

Molecular mechanisms in the pathogenesis of traumatic brain injury

S K Ray et al. Histol Histopathol. 2002 Oct.

Abstract

Traumatic brain injury (TBI) is a serious neurodisorder commonly caused by car accidents, sports related events or violence. Preventive measures are highly recommended to reduce the risk and number of TBI cases. The primary injury to the brain initiates a secondary injury process that spreads via multiple molecular mechanisms in the pathogenesis of TBI. The events leading to both neurodegeneration and functional recovery after TBI are generalized into four categories: (i) primary injury that disrupts brain tissues; (ii) secondary injury that causes pathophysiology in the brain; (iii) inflammatory response that adds to neurodegeneration; and (iv) repair-regeneration that may contribute to neuronal repair and regeneration to some extent following TBI. Destructive multiple mediators of the secondary injury process ultimately dominate over a few intrinsic protective measures, leading to activation of cysteine proteases such as calpain and caspase-3 that cleave key cellular substrates and cause cell death. Experimental studies in rodent models of TBI suggest that treatment with calpain inhibitors (e.g., AK295, SJA6017) and neurotrophic factors (e.g., NGF, BDNF) can prevent neuronal death and dysfunction in TBI. Currently, there is still no precise therapeutic strategy for the prevention of pathogenesis and neurodegeneration following TBI in humans. The search continues to explore new therapeutic targets and development of promising drugs for the treatment of TBI.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources