Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2002;34(4):248-58.
doi: 10.1080/078538902320322510.

Molecular actions of drugs that sensitize cardiac myofilaments to Ca2+

Affiliations
Review

Molecular actions of drugs that sensitize cardiac myofilaments to Ca2+

Grace M Arteaga et al. Ann Med. 2002.

Abstract

Ca(2+)-sensitizers are inotropic agents that modify the response of myofilaments to Ca2+, and are potentially valuable drugs in the treatment of heart failure. These agents have diverse chemical structures, and in some cases also have effects as inhibitors of phosphodiesterase activity. Advantages of their actions include vasodilation combined with inotropic effects. Reduction in the amounts of Ca2+ required to activate the myofilaments also lowers the oxygen consumption required for Ca2+ transport, lowers the threat of arrhythmias, and may blunt Ca(2+)-dependent transcriptional and translational mechanisms leading to hypertrophy and failure. Although diastolic abnormalities and impaired relaxation were thought to be potential undesirable effects of Ca(2+)-sensitizers, studies of hearts beating in situ indicate that this may not be a major problem. We focus here on Ca(2+)-sensitizers that act on cardiac troponin C, the Ca2+ receptor that triggers activation of the actin-myosin interaction. Structural studies have identified a unique mode of Ca2+ signaling in cardiac troponin C that should aid in targeting drugs to the heart. Moreover, identification of docking sites of Ca(2+)-sensitizers on troponin C suggest new directions for rational drug design.

PubMed Disclaimer

MeSH terms

LinkOut - more resources