Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1998 Mar 1;186(1-2):262-74.
doi: 10.1016/s0022-0248(97)00445-4.

Terrestrial and space-grown HAP and OCP crystals: effect of growth conditions on perfection and morphology

Affiliations
Comparative Study

Terrestrial and space-grown HAP and OCP crystals: effect of growth conditions on perfection and morphology

E I Suvorova et al. J Cryst Growth. .

Abstract

This paper reports comparative characterizations of calcium phosphate crystals grown on earth and in space. At the CaCl2 and KH2PO4 + K2HPO4 solution concentrations and the pH used, only hydroxyapatite (HAP) crystals grow under terrestrial condition while both HAP and octacalcium phosphate (OCP) crystals grew during the space experiment. The space-grown OCP crystals reach 3 mm in size, the space-grown HAP crystals reach sizes up to 100 times larger than the earth-grown crystallites. It was found also that the space-grown crystallites are more perfect than the terrestrial ones, being more stable under electron beam during HRTEM examination. Spherolites of hydroxyapatite consist of small and thin HAP crystals with different orientations. Space-grown OCP crystals containing almost pure OCP phase show strong striations along the c direction due to thickness variations. Terrestrial OCP crystals grown at lowest supersaturation on earth may be almost as large as the space-grown ones, possess a regular habit and are homogeneous in thickness. However, they always contain substantial regions of HAP structure. Also, in these crystals electron irradiation induces phase transformation from crystalline to amorphous (disordered) state during transmission electron microscopy observations. In the space-grown crystals, such transformation needs longer radiation time. We believe that the differences described above come from much lower supersaturation and different pH for crystals nucleating and growing in space compared to those formed on earth.

PubMed Disclaimer

Similar articles

Cited by

Publication types