Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Aug-Sep;52(3):169-78.
doi: 10.1016/s0165-022x(02)00073-8.

High efficient encapsulation of plasmid DNA in PLGA microparticles by organic phase self-emulsification

Affiliations

High efficient encapsulation of plasmid DNA in PLGA microparticles by organic phase self-emulsification

F F Zhuang et al. J Biochem Biophys Methods. 2002 Aug-Sep.

Abstract

To overcome the drawbacks of encapsulating plasmid DNA (pDNA) in poly (D,L-lactic-co-glycolic acid) (PLGA) by water-in-oil-in-water double-emulsion solvent-evaporation method, we have developed a novel procedure for encapsulating pDNA in PLGA microparticles called DNA organic phase self-emulsification (DOPSM). This method was based on both the extraction plasmid DNA from aqueous phase into organic phase and the spontaneous emulsification DNA in organic phase by solvent diffusion method. The efficiency of extraction plasmid DNA into organic phase is 99% and the concentration of pDNA in organic phase is up to 2.4 mg/ml. The efficiency of microencapsulation of plasmid DNA in PLGA is up to 76% and can be enhanced by lowering the pH of aqueous solution of emulsion. The microparticles size of PLGA of pDNA is in a narrow range of 1-2 microm. This procedure does not involve the high mechanical energy to emulsify which may damage the integrity of pDNA. This method can be applied to encapsulate the pDNA into microparticles of other biocompatible polymers with high efficiency.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources