Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1975 May 6;14(9):1908-14.
doi: 10.1021/bi00680a016.

Subunit location of sulfhydryl groups of myosin labeled with a purine disulfide analog of adenosine triphosphate

Subunit location of sulfhydryl groups of myosin labeled with a purine disulfide analog of adenosine triphosphate

P D Wagner et al. Biochemistry. .

Abstract

A purine disulfide analog of ATP, 6,6'-dithiobis(inosinyl imidodiphosphate), forms mixed disulfides with cysteine residues at what are believed to be ATP regulatory sites of myosin. Blocking these sites causes inactivation of the ATPase activity at the active sites. Two cysteine residues per head are specifically modifed by this disulfide analog. The thiopurine nucleotides can be stoichiometrically displaced from myosin by [14-C]cyanide to give a more stable thiocyanato derivative of the enzyme. [14-C]Thiocyanatomyosin (3.7 14-CN/myosin) was dissociated in 4 M urea and the individual subunits were isolated. The heavy chains each had 0.78 14-CN bound per 200,000 molecular weight unit. The light chain with molecular weight of 20,700 had 1.00 14-CN bound and the 16,500 molecular weight light chain had 0.65 14-CN bound. The two 19,000 molecular weight light chains were not labeled. The two labeled light chains have only a single cysteine which is stoichiometrically modified. These two light chains show a high degree of homology and presumably perform identical functions in myosin. Their specific modification by the purine disulfide analog and their other known properties suggest that they contribute directly to the ATP regulatory sites and may, in fact, function as regulatory subunits.

PubMed Disclaimer

Similar articles

Publication types