Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Nov;283(5):R1104-17.
doi: 10.1152/ajpregu.00347.2002.

Prostaglandin E(2)-synthesizing enzymes in fever: differential transcriptional regulation

Affiliations
Free article

Prostaglandin E(2)-synthesizing enzymes in fever: differential transcriptional regulation

Andrei I Ivanov et al. Am J Physiol Regul Integr Comp Physiol. 2002 Nov.
Free article

Abstract

The febrile response to lipopolysaccharide (LPS) consists of three phases (phases I-III), all requiring de novo synthesis of prostaglandin (PG) E(2). The major mechanism for activation of PGE(2)-synthesizing enzymes is transcriptional upregulation. The triphasic febrile response of Wistar-Kyoto rats to intravenous LPS (50 microg/kg) was studied. Using real-time RT-PCR, the expression of seven PGE(2)-synthesizing enzymes in the LPS-processing organs (liver and lungs) and the brain "febrigenic center" (hypothalamus) was quantified. Phase I involved transcriptional upregulation of the functionally coupled cyclooxygenase (COX)-2 and microsomal (m) PGE synthase (PGES) in the liver and lungs. Phase II entailed robust upregulation of all enzymes of the major inflammatory pathway, i.e., secretory (s) phospholipase (PL) A(2)-IIA --> COX-2 --> mPGES, in both the periphery and brain. Phase III was accompanied by the induction of cytosolic (c) PLA(2)-alpha in the hypothalamus, further upregulation of sPLA(2)-IIA and mPGES in the hypothalamus and liver, and a decrease in the expression of COX-1 and COX-2 in all tissues studied. Neither sPLA(2)-V nor cPGES was induced by LPS. The high magnitude of upregulation of mPGES and sPLA(2)-IIA (1,257-fold and 133-fold, respectively) makes these enzymes attractive targets for anti-inflammatory therapy.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources