Inventory and functional characterization of the HAK potassium transporters of rice
- PMID: 12376644
- PMCID: PMC166606
- DOI: 10.1104/pp.007781
Inventory and functional characterization of the HAK potassium transporters of rice
Abstract
Plants take up large amounts of K(+) from the soil solution and distribute it to the cells of all organs, where it fulfills important physiological functions. Transport of K(+) from the soil solution to its final destination is mediated by channels and transporters. To better understand K(+) movements in plants, we intended to characterize the function of the large KT-HAK-KUP family of transporters in rice (Oryza sativa cv Nipponbare). By searching in databases and cDNA cloning, we have identified 17 genes (OsHAK1-17) encoding transporters of this family and obtained evidence of the existence of other two genes. Phylogenetic analysis of the encoded transporters reveals a great diversity among them, and three distant transporters, OsHAK1, OsHAK7, and OsHAK10, were expressed in yeast (Saccharomyces cerevisiae) and bacterial mutants to determine their functions. The three transporters mediate K(+) influxes or effluxes, depending on the conditions of the experiment. A comparative kinetic analysis of HAK-mediated K(+) influx in yeast and in roots of K(+)-starved rice seedlings demonstrated the involvement of HAK transporters in root K(+) uptake. We discuss that all HAK transporters may mediate K(+) transport, but probably not only in the plasma membrane. Transient expression of the OsHAK10-green fluorescent protein fusion protein in living onion epidermal cells targeted this protein to the tonoplast.
Figures








Similar articles
-
Rice potassium transporter OsHAK1 is essential for maintaining potassium-mediated growth and functions in salt tolerance over low and high potassium concentration ranges.Plant Cell Environ. 2015 Dec;38(12):2747-65. doi: 10.1111/pce.12585. Epub 2015 Jul 16. Plant Cell Environ. 2015. PMID: 26046301
-
KT/HAK/KUP potassium transporters gene family and their whole-life cycle expression profile in rice (Oryza sativa).Mol Genet Genomics. 2008 Nov;280(5):437-52. doi: 10.1007/s00438-008-0377-7. Epub 2008 Sep 23. Mol Genet Genomics. 2008. PMID: 18810495
-
Rice potassium transporter OsHAK18 mediates phloem K+ loading and redistribution.Plant J. 2023 Oct;116(1):201-216. doi: 10.1111/tpj.16371. Epub 2023 Jul 11. Plant J. 2023. PMID: 37381632
-
Plant KT/KUP/HAK potassium transporters: single family - multiple functions.Ann Bot. 2007 Jun;99(6):1035-41. doi: 10.1093/aob/mcm066. Epub 2007 May 11. Ann Bot. 2007. PMID: 17495982 Free PMC article. Review.
-
Plant HAK/KUP/KT K+ transporters: Function and regulation.Semin Cell Dev Biol. 2018 Feb;74:133-141. doi: 10.1016/j.semcdb.2017.07.009. Epub 2017 Jul 13. Semin Cell Dev Biol. 2018. PMID: 28711523 Review.
Cited by
-
Receptor-Like Kinase RUPO Interacts with Potassium Transporters to Regulate Pollen Tube Growth and Integrity in Rice.PLoS Genet. 2016 Jul 22;12(7):e1006085. doi: 10.1371/journal.pgen.1006085. eCollection 2016 Jul. PLoS Genet. 2016. PMID: 27447945 Free PMC article.
-
Ion Changes and Signaling under Salt Stress in Wheat and Other Important Crops.Plants (Basel). 2023 Dec 22;13(1):46. doi: 10.3390/plants13010046. Plants (Basel). 2023. PMID: 38202354 Free PMC article. Review.
-
Identification and characterization of HAK/KUP/KT potassium transporter gene family in barley and their expression under abiotic stress.BMC Genomics. 2021 May 1;22(1):317. doi: 10.1186/s12864-021-07633-y. BMC Genomics. 2021. PMID: 33932999 Free PMC article.
-
CBL-Interacting Protein Kinase OsCIPK18 Regulates the Response of Ammonium Toxicity in Rice Roots.Front Plant Sci. 2022 Apr 29;13:863283. doi: 10.3389/fpls.2022.863283. eCollection 2022. Front Plant Sci. 2022. PMID: 35574117 Free PMC article.
-
Heritable alteration in salt-tolerance in rice induced by introgression from wild rice (Zizania latifolia).Rice (N Y). 2012 Dec 19;5(1):36. doi: 10.1186/1939-8433-5-36. Rice (N Y). 2012. PMID: 24280025 Free PMC article.
References
-
- Apse MP, Aharon GS, Snedden WA, Blumwald E. Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science. 1999;285:1256–1258. - PubMed
-
- Bakker EP. Low-affinity K+uptake systems. In: Bakker EP, editor. Alkali Cation Transport Systems in Prokaryotes. Boca Raton, FL: CRC Press; 1993. pp. 253–276.
-
- Bañuelos MA, Madrid R, Rodríguez-Navarro A. Individual functions of the HAK and TRK potassium transporters of Schwanniomyces occidentalis. Mol Microbiol. 2000;37:671–679. - PubMed
-
- Barbier-Brygoo H, Vinauger M, Colcombet J, Ephritikhine G, Frachisse J-M, Maurel C. Anion channels in higher plants: functional characterization, molecular structure and physiological role. Biochim Biophys Acta. 2000;1465:199–218. - PubMed
Publication types
MeSH terms
Substances
Associated data
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Molecular Biology Databases