Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Sep-Oct;42(5):1136-45.
doi: 10.1021/ci025515j.

Application of associative neural networks for prediction of lipophilicity in ALOGPS 2.1 program

Affiliations

Application of associative neural networks for prediction of lipophilicity in ALOGPS 2.1 program

Igor V Tetko et al. J Chem Inf Comput Sci. 2002 Sep-Oct.

Abstract

This article provides a systematic study of several important parameters of the Associative Neural Network (ASNN), such as the number of networks in the ensemble, distance measures, neighbor functions, selection of smoothing parameters, and strategies for the user-training feature of the algorithm. The performance of the different methods is assessed with several training/test sets used to predict lipophilicity of chemical compounds. The Spearman rank-order correlation coefficient and Parzen-window regression methods provide the best performance of the algorithm. If additional user data is available, an improved prediction of lipophilicity of chemicals up to 2-5 times can be calculated when the appropriate smoothing parameters for the neural network are selected. The detected best combinations of parameters and strategies are implemented in the ALOGPS 2.1 program that is publicly available at http://www.vcclab.org/lab/alogps.

PubMed Disclaimer

LinkOut - more resources