Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2002 Oct;122(4):1382-8.
doi: 10.1378/chest.122.4.1382.

Effects of short-term pressure-controlled ventilation on gas exchange, airway pressures, and gas distribution in patients with acute lung injury/ARDS: comparison with volume-controlled ventilation

Affiliations
Comparative Study

Effects of short-term pressure-controlled ventilation on gas exchange, airway pressures, and gas distribution in patients with acute lung injury/ARDS: comparison with volume-controlled ventilation

Maura Prella et al. Chest. 2002 Oct.

Erratum in

  • Chest. 2003 Jan;123(1):315.

Abstract

Study objectives: The potential clinical benefits of pressure-controlled ventilation (PCV) over volume-controlled ventilation (VCV) in patients with acute lung injury (ALI) or ARDS still remain debated. We compared PCV with VCV in patients with ALI/ARDS with respect to the following physiologic end points: (1) gas exchange and airway pressures, and (2) CT scan intrapulmonary gas distribution at end-expiration.

Design: Prospective, observational study.

Setting: A multidisciplinary ICU in a nonuniversity, acute-care hospital.

Patients: Ten patients with ALI or ARDS (9 men and 1 woman; age range, 17 to 80 years).

Interventions: Sequential ventilation in PCV and VCV with a constant inspiratory/expiratory ratio, tidal volume, respiratory rate, and total positive end-expiratory pressure; measurement of gas exchange and airway pressures; and achievement of CT sections at lung base, hilum, and apex for the quantitative analysis of lung densities and of aerated vs nonaerated zones.

Results: PaO(2), PaCO(2), and PaO(2)/fraction of inspired oxygen ratio levels did not differ between PCV and VCV. Peak airway pressure (Ppeak) was significantly lower in PCV compared with VCV (26 +/- 2 cm H(2)O vs 31 +/- 2 cm H(2)O; p < 0.001; mean +/- SEM). The surface areas of the nonaerated zones as well as the total areas at each section level were unchanged in PCV compared with VCV, except at the apex level, where there was a significantly greater nonaerated area in VCV (11 +/- 2 cm(2) vs 9 +/- 2 cm(2); p < 0.05). The total mean CT number of each lung (20 lungs from 10 patients) was similar in the two modes, as were the density values at the basal and apical levels; the hilum mean CT number was - 442 +/- 28 Hounsfield units (HU) in VCV and - 430 +/- 26 HU in PCV (p < 0.005).

Conclusions: These data show that PCV allows the generation of lower Ppeaks through the precise titration of the lung distending pressure, and might be applied to avoid regional overdistension by means of a more homogeneous gas distribution.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources