Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Oct;72(4):752-61.

Phosphorylation-dependent interaction of osteopontin with its receptors regulates macrophage migration and activation

Affiliations
  • PMID: 12377945

Phosphorylation-dependent interaction of osteopontin with its receptors regulates macrophage migration and activation

Georg F Weber et al. J Leukoc Biol. 2002 Oct.

Abstract

Neutrophil-independent macrophage responses are a prominent part of delayed-type immune and healing processes and depend on T cell-secreted cytokines. An important mediator in this setting is the phosphoprotein osteopontin, whose secretion by activated T cells confers resistance to infection by several intracellular pathogens through recruitment and activation of macrophages. Here, we analyze the structural basis of this activity following cleavage of the phosphoprotein by thrombin into two fragments. An interaction between the C-terminal domain of osteopontin and the receptor CD44 induces macrophage chemotaxis, and engagement of beta(3)-integrin receptors by a nonoverlapping N-terminal osteopontin domain induces cell spreading and subsequent activation. Serine phosphorylation of the osteopontin molecule on specific sites is required for functional interaction with integrin but not CD44 receptors. Thus, in addition to regulation of intracellular enzymes and substrates, phosphorylation also regulates the biological activity of secreted cytokines. These data, taken as a whole, indicate that the activities of distinct osteopontin domains are required to coordinate macrophage migration and activation and may bear on incompletely understood mechanisms of delayed-type hypersensitivity, wound healing, and granulomatous disease.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources