The maintenance of the energized membrane state and its relation to active transport in Escherichia coli
- PMID: 123782
- DOI: 10.1016/0005-2728(75)90049-3
The maintenance of the energized membrane state and its relation to active transport in Escherichia coli
Abstract
1. An ATPase mutant of Escherichia coli and two partial revertants of that mutant were examined for the ability to generate a high energy membrane state with D-lactate or ATP, as measured by the quenching of the fluorescent dye quinacrine. 2. All three strains showed reductions in the aerobically-driven quenching of fluorescence compared to the wild type, but the reduction could be reversed by the addition of eitherN,N'-dicyclohexylcarbodiimide or the crude soluble ATPase of the wild type. 3. The mutant exhibited a decreased ability to accumulate sugars and amino acids and showed an increased permeability to protons. 4. One partial revertant showed a slight increase in active transport and a slight decrease in proton permeability. 5. The other partial revertant showed a large increase in transport ability and a large decrease in proton permeability. 6. A model is proposed in which the conformation of the Mg-2+-ATPase is important in the utilization of energy derived from the electron transport chain and this function is independent of the catalytic activity of the Mg-2+-ATPase.
Similar articles
-
Energy transduction in Escherichia coli. The effect of chaotropic agents on energy coupling in everted membrane vesicles from aerobic and anaerobic cultures.Biochim Biophys Acta. 1977 Feb 7;459(2):225-40. doi: 10.1016/0005-2728(77)90024-x. Biochim Biophys Acta. 1977. PMID: 138439
-
Energy transduction in Escherichia coli. The role of the Mg2+ATPase.J Biol Chem. 1975 Nov 10;250(21):8409-15. J Biol Chem. 1975. PMID: 127791
-
Energy transduction in Escherichia coli: physiological and biochemical effects of mutation in the uncB locus.J Bacteriol. 1978 Jan;133(1):108-13. doi: 10.1128/jb.133.1.108-113.1978. J Bacteriol. 1978. PMID: 145432 Free PMC article.
-
Bacterial transport.Annu Rev Biochem. 1974;43(0):123-46. doi: 10.1146/annurev.bi.43.070174.001011. Annu Rev Biochem. 1974. PMID: 4277372 Review. No abstract available.
-
Chemiosmotic interpretation of active transport in bacteria.Ann N Y Acad Sci. 1974 Feb 18;227:297-311. doi: 10.1111/j.1749-6632.1974.tb14395.x. Ann N Y Acad Sci. 1974. PMID: 4275121 Review. No abstract available.
Cited by
-
Properties of the thiamine transport system in Escherichia coli.J Bacteriol. 1980 Jan;141(1):254-61. doi: 10.1128/jb.141.1.254-261.1980. J Bacteriol. 1980. PMID: 6986359 Free PMC article.
-
Identification of the dicyclohexylcarbodiimide-reactive protein component of the adenosine 5'-triphosphate energy-transducing system of Escherichia coli.J Bacteriol. 1975 Nov;124(2):870-83. doi: 10.1128/jb.124.2.870-883.1975. J Bacteriol. 1975. PMID: 126994 Free PMC article.
-
Mutant of Escherichia coli defective in response to colicin K and in active transport.J Bacteriol. 1976 Feb;125(2):467-74. doi: 10.1128/jb.125.2.467-474.1976. J Bacteriol. 1976. PMID: 128554 Free PMC article.
-
Method for isolation of Escherichia coli mutants with defects in the proton-translocating sector of the membrane adenosine triphosphatase complex.J Bacteriol. 1978 Nov;136(2):570-81. doi: 10.1128/jb.136.2.570-581.1978. J Bacteriol. 1978. PMID: 152309 Free PMC article.
-
Energy transduction in Escherichia coli: new mutation affecting the Fo portion of the ATP synthetase complex.J Bacteriol. 1978 Jun;134(3):1030-8. doi: 10.1128/jb.134.3.1030-1038.1978. J Bacteriol. 1978. PMID: 149108 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources